INSTALLATION INSTRUCTIONS

Models: ERVR-A3D-X ERVR-C3D-X

RETROFIT ENERGY RECOVERY VENTILATOR

For Use with Bard 2 Thru 5 Ton "P" Series Air Conditioners and Heat Pumps

BARD MANUFACTURING COMPANY Bryan, Ohio 43506

Since 1914...Moving ahead, just as planned.

Manual : 2100-445 Supersedes: File: Volume III Tab 19 Date: 01-06-04

CONTENTS

Electrical Specifications1
General Description1
General Information1
Unpacking1
Basic Installation (Field Installation)1
Application Data2
Ventilator Checkout7
Control Options7
Ventilation Air Flow7
Energy Recovery Ventilator Maintenance
Maintenance Procedures8
Wiring Diagram 11-12

Figures

Figure 1	Retrofit Installation of Energy Recovery Ventilator
Figure 2	Retrofit Installation of Energy Recovery Ventilator
Figure 3	Retrofit Installation of Energy Recovery Ventilator
Figure 4	Retrofit Installation of Energy Recovery Ventilator
•	Hub Assembly with Ball Bearings 9 Belt Replacement Instructions 10

Tables

Table 1	Specifications1
Table 2	Ventilation Air Table7

COPYRIGHT JANUARY 2004 BARD MANUFACTURING COMPANY BRYAN, OHIO USA 43506

ELECTRICAL SPECIFICATIONS

TABLE 1 SPECIFICATIONS

Model	Voltage	Amps	Control Voltage		
ERVR-A3X	230/208 1 PH or 3 PH	2.2	24V		
ERVR-C3X	460 3 PH	1.2	24V		

NOTE: The power supply and wiring to an existing unit must be reviewed for adequacy to handle the additional amperage of the ERVR in accordance with all local and national electrical codes.

GENERAL DESCRIPTION

The Bard Energy recovery ventilator was designed to provide energy efficient, cost effective ventilation to meet I.A.Q. (Indoor Air Quality) requirements while still maintaining good indoor comfort and humidity control for a variety of applications such as schools, classrooms, lounges, conference rooms, beauty salons and others. It provides a constant supply of fresh air for control of airborne pollutants including CO_2 , smoke, radon, formaldehyde, excess moisture, virus and bacteria.

The ventilator incorporates patented rotary heat exchanger technology to remove both heat and moisture.

It is designed as a single package which can be easily field installed for new installations or retrofit. The package consists of a unique rotary Energy Recovery Cassette that can be easily removed for cleaning or maintenance. The ERVR has two 13 inch diameter heat transfer wheels. The heat transfer wheels use a permanently bonded dry desiccant coating for total heat recovery.

Ventilation is accomplished with two (2) blower/ motor assemblies each consisting of a drive motor and dual blowers for maximum ventilation at low sound levels. Air is exhausted at the same rate that fresh air is brought into the structure thus not pressuring the building. The rotating energy wheels provide the heat transfer effectively during both summer and winter conditions. The ERVR provides required ventilation to meet the requirements of ASHRAE 62-1989 standard.

NOTE: During operation below 4 degrees F outdoor temperature, freezing of moisture in the heat transfer wheel can occur. Consult the factory if this possibility exists.

GENERAL INFORMATION

The ventilator should only be installed by a trained heating and air conditioning technician. These instructions serve as a guide to the technician installing the ventilator package. They are not intended as a step by step procedure with which the mechanically inclined owner can install the package.

The ventilator housing is shipped in one carton which contains the following:

- 1. Energy Recovery Ventilator
- 2. Parts Kit
- 3. Installation Instructions

UNPACKING

Upon receipt of the equipment, be sure to compare the model number found on the shipping label with the accessory identification information on the ordering and shipping document to verify that the correct accessory has been shipped.

Inspect the carton housing of each ventilator as it is received, and before signing the freight bill verify that all items have been received and that there is no visible damage. Note any shortages or damage on all copies of the freight bill. The receiving party must contact the last carrier immediately, preferably in writing, requesting inspection by the carrier's agent. Concealed damage not discovered until after loading must be reported to the carrier within 15 days of its receipt.

BASIC INSTALLATION (FIELD INSTALLATION)

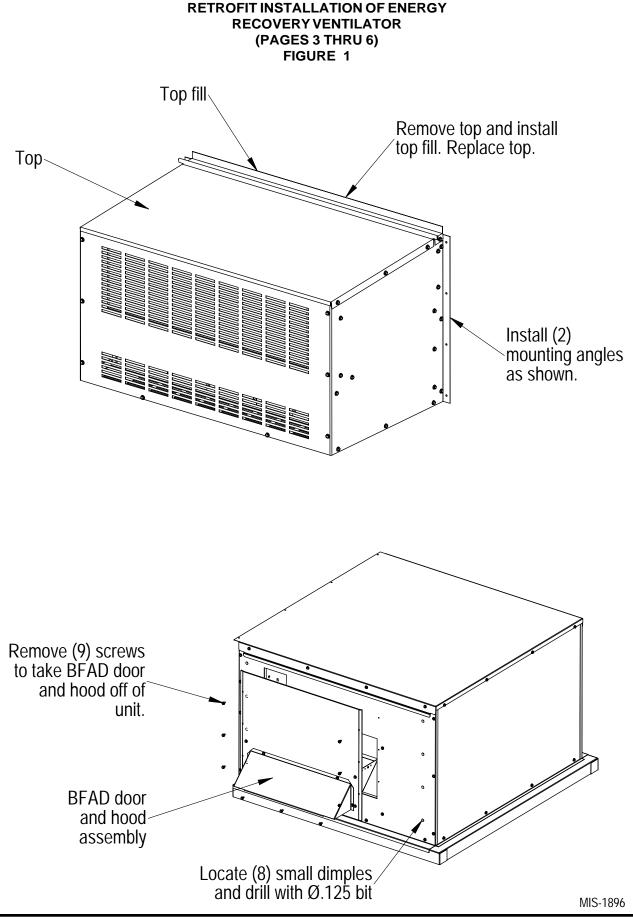
Unpack the ventilator assembly which includes the integral ventilator with attached electrical harnesses and miscellaneous hardware.

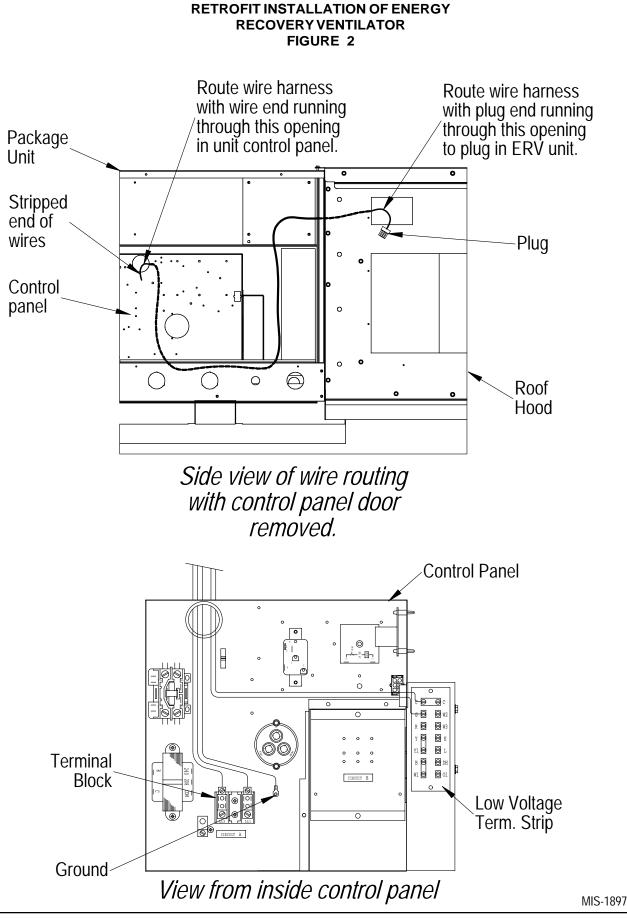
Open and lock unit disconnect switch before installing this accessory to prevent injury or death due to electrical shock or contact with moving parts. Turn thermostat to OFF.

Be sure the correct model and voltage Energy Recovery Ventilator is used with the correct air conditioner or heat pump to insure correct voltage compatibility.

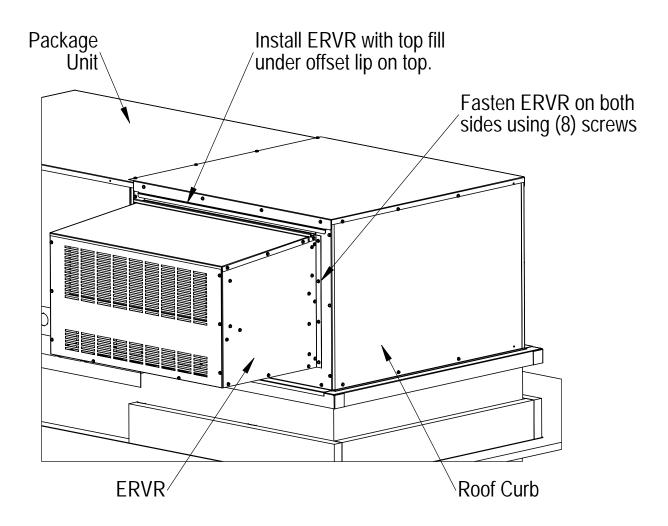
APPLICATION DATA - ERVR-A3D-X AND ERVR-C3D-X

SUMMER COOLING PERFORMANCE (INDOOR DESIGN CONDITIONS 75° DB / 62° WB)

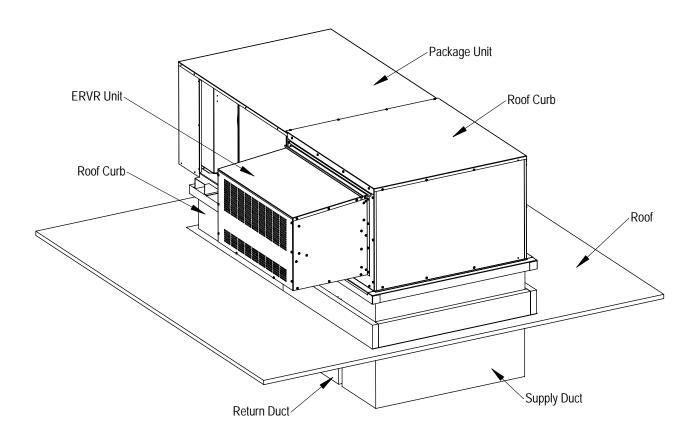

Ambie O.D		VE	ENTILA	TION RA 63% Eff		400 CI	FM	VENTILATION RATE 325 CFM 64% Efficiency					VENTILATION RATE 250 CFM 65% Efficiency						
DB/W	ΒF	VLT	VLS	VLL	HRT	TRS	HRL	VLT	VLS	VLL	HRT	HRS	HRL	VLT	VLS	VLL	HRT	HRS	HRL
105	75 70 65	19080 12960 12960	12960	6120 0 0	12020 8164 8164	8164	3855 0 0	15502 10530 10530	10530	4972 0 0	9921 6739 6739	6739	3182 0 0	11925 8100 8100	8100	3825 0 0	7751 5265 5265	5265	2486 0 0
100	80 75 70 65 60	28080 19080 10980 10800 10800	10800	17280 8280 180 0 0	17690 12020 6717 6804 6804	6804	10886 5216 113 0 0	22815 15502 8921 8775 8775	8775	14040 6727 146 0 0	14601 9921 5709 5616 5616	5616	8985 4305 93 0 0	17550 11925 6862 6750 6750	6750	10800 5175 112 0 0	11407 7751 4460 4387 4387	4387	7019 3363 73 0 0
95	80 75 70 65 60	28080 19080 10980 8640 8640	8640	19440 10440 2340 0 0	17690 12020 6917 5443 5443	5443	12247 6577 1474 0 0	22815 15502 8921 7020 7020	7020	15795 8482 1901 0 0	14601 9921 5709 4492 4492	4492	10108 5428 1216 0 0	17550 11925 6862 5400 5400	5400	12150 6525 1462 0 0	11407 7751 4460 3510 3510	3510	7897 4241 950 0 0
90	80 75 70 65 60	28080 19080 10980 6480 6480	6480	21600 12600 4500 0 0	17690 12020 6917 4082 4082	4082	13608 7938 2835 0 0	22815 15502 8921 5265 5265	5265	17550 10237 3656 0 0	14601 9921 5709 3369 3369	3369	11232 6552 2340 0 0	17550 11925 6862 4050 4050	4050	13500 7875 2812 0 0	11407 7751 4460 2632 2632	2632	8774 5118 1828 0 0
85	80 75 70 65 60	28080 19080 10980 4320 4320	4320	23760 14760 6660 0 0	17690 12020 6917 2721 2721	2721	14968 9298 4195 0 0	22815 15502 8921 3510 3510	3510	19305 11992 5411 0 0	14601 9921 5709 2246 2246	2246	12355 7675 3463 0 0	17550 11925 6862 2700 2700	2700	14850 9225 4162 0 0	11407 7751 4460 1755 1755	1755	9652 5996 2705 0 0
80	75 70 65 60	19080 10980 3780 2160	2160	16920 8820 1620 0	12020 6917 2381 1360	1360	10659 5556 1020 0	15502 8921 3071 1755	1755	13747 7166 1316 0	9921 5709 1965 1123	1123	8798 4586 842 0	11925 6862 2362 1350	1350	10575 5512 1012 0	7751 4460 1535 877	877	6873 3583 658 0
75	70 65 60	10980 3780 0	000	10980 3780 0	6917 2381 0	000	6917 2380 0	8921 3071 0	000	8921 3071 0	5709 1965 0	000	5709 1965 0	6862 2362 0	000	6862 2362 0	4460 1535 0	000	4460 1535 0


WINTER HEATING PERFORMANCE (INDOOR DESIGN CONDITIONS 70° F DB)

Ambient	VENTILATION RATE							
O.D.	400 CFM	75% Eff	325 CFM	76% Eff	250 CFM 77% Eff			
DB F	WVL	WHR	WVL	WHR	WVL	WHR		
65	2160	1620	1755	1333	1350	1039		
60	4320	3240	3510	2667	2700	2079		
55	6480	4860	5265	4001	4050	3118		
50	8640	6480	7020	5335	5400	4158		
45	10800	8100	8775	6669	6750	5197		
40	12960	9720	10530	8002	8100	6237		
35	15120	11340	12285	9336	9450	7276		
30	17280	12960	14040	10670	10800	8316		
25	19440	14580	15795	12004	12150	9355		
20	21600	16200	17550	13338	13500	10395		
15	23760	17820	19305	14671	14850	11434		


LEGEND

- VLT = Ventilation Load Total
- VLS = Ventilation Load Sensible
- VLL = Ventilation Load Latent
- HRT = Heat Recover Total
- HRS = Heat Recovery Sensible
- HRL = Heat Recovery Latent
- WVL= Winter Ventilation Load
- WHR = Winter Heat Recovery



RETROFIT INSTALLATION OF ENERGY RECOVERY VENTILATOR FIGURE 3

MIS-1898

RETROFIT INSTALLATION OF ENERGY RECOVERY VENTILATOR FIGURE 4

MIS-1895

VENTILATOR CHECKOUT

- 1. Resupply power to unit.
- 2. Energize the evaporator blower by switching thermostat to the manual fan position with Heat/ Cool in OFF position.
- 3. Ventilator heat transfer wheels should rotate slowly. (49 RPM). Intake and exhaust blowers should run.
- 4. De-energized evaporator blower. Energy recovery heat transfer wheels and fresh air exhaust air blowers should stop.
- 5. Reinstall top on ERVR.
- 6. This completes ventilator checkout.

CONTROL OPTIONS

The unit comes from the factory wired to provide ventilation whenever the indoor blower of the air conditioner or heat pump is operating. Continuous ventilation can be obtained by setting the wall thermostat on continuous fan.

VENTILATION AIR FLOW

The ERVR is equipped with a 3 speed motor to provide the capability of adjusting the ventilation rates to the requirements of the specific application by simply changing motor speeds.

TABLE 2VENTILATION AIR TABLE

VENTILATION AIR (CFM)								
High Medium Low Speed Speed Speed Model (Black) (Blue) (Red)								
ERVR	400	325	250					

Open disconnect to shut all power off before changing wiring to change motor speed. Failure to do so could result in injury or death due to electrical shock.

ENERGY RECOVERY VENTILATOR MAINTENANCE

GENERAL INFORMATION

The ability to clean exposed surfaces within air moving systems is an important design consideration for the maintenance of system performance and air quality. The need for periodic cleaning will be a function of operating schedule, climate, and contaminants in the indoor air being exhausted and in the outdoor air being supplied to the building. All components exposed to the airstream, including energy recovery wheels, may require cleaning in most applications.

Rotary counterflow heat exchanges (heat wheels) with laminar airflow are "self-cleaning" with respect to dry particles. Smaller particles pass through; larger particles land on the surface and are blow clear as the flow direction is reversed. For this reason the primary need for cleaning is to remove films of oil based aerosols that have condensed on energy transfer surfaces. Buildup of material over time may eventually reduce airflow. Most importantly, in the case of desiccant coated (enthalpy) wheels, such films can close off micron sized pores at the surface of the desiccant material, reducing the efficiency with which the desiccant can adsorb and desorb moisture.

FREQUENCY

In a reasonably clean indoor environment such as a school, office building, or home, experience shows that reductions of airflow or loss of sensible (temperature) effectiveness may not occur for ten or more years. However, experience also shows that measurable changes in latent energy (water vapor) transfer can occur in shorter periods of time in commercial, institutional and residential applications experiencing moderate occupant smoking or with cooking facilities. In applications experiencing unusually high levels of occupant smoking, such as smoking lounges, nightclubs, bars and restaurants, washing of energy transfer surfaces, as frequently as every six months, may be necessary to maintain latent transfer efficiency. Similar washing cycles may also be appropriate for industrial applications involving the ventilation of high levels of smoke or oil based aerosols such as those found in welding or machining operations, for example. In these applications, latent efficiency losses of as much as 40% or more may develop over a period of one to three years.

CLEANABILITY AND PERFORMANCE

In order to maintain energy recovery ventilation systems, energy transfer surfaces must be accessible for washing to remove oils, grease, tars and dirt that can impede performance or generate odors. Washing of the desiccant surfaces is required to remove contaminate buildups that can reduce adsorption of water molecules. The continued ability of an enthalpy wheel to transfer latent energy depends upon the permanence of the bond between the desiccant and the energy transfer surfaces.

Bard wheels feature silica gel desiccant permanently bonded to the heat exchange surface without adhesives; the desiccant will not be lost in the washing process. Proper cleaning of the Bard energy recovery wheel will restore latent effectiveness to near original performance.

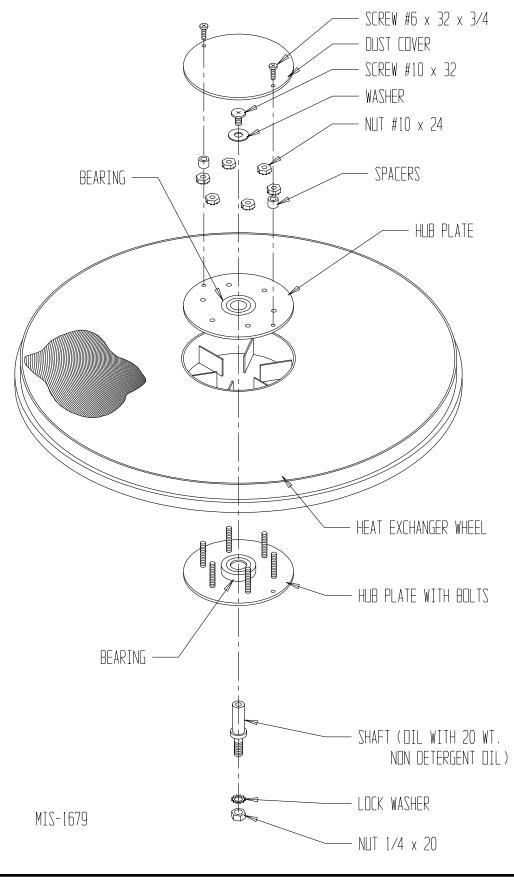
MAINTENANCE PROCEDURES

NOTE: Local conditions can vary and affect the required time between routine maintenance procedures, therefore all sites (or specific units at a site) may not have the same schedule to maintain acceptable performance. The following timetables are recommended and can be altered based on local experience.

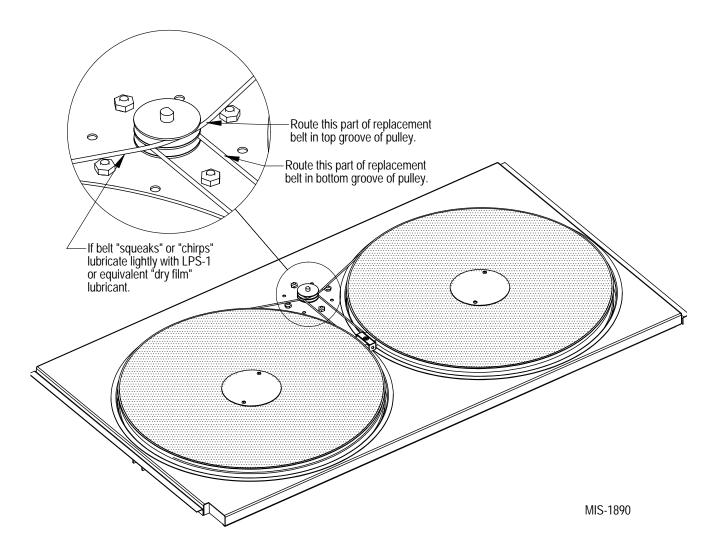
QUARTERLY MAINTENANCE

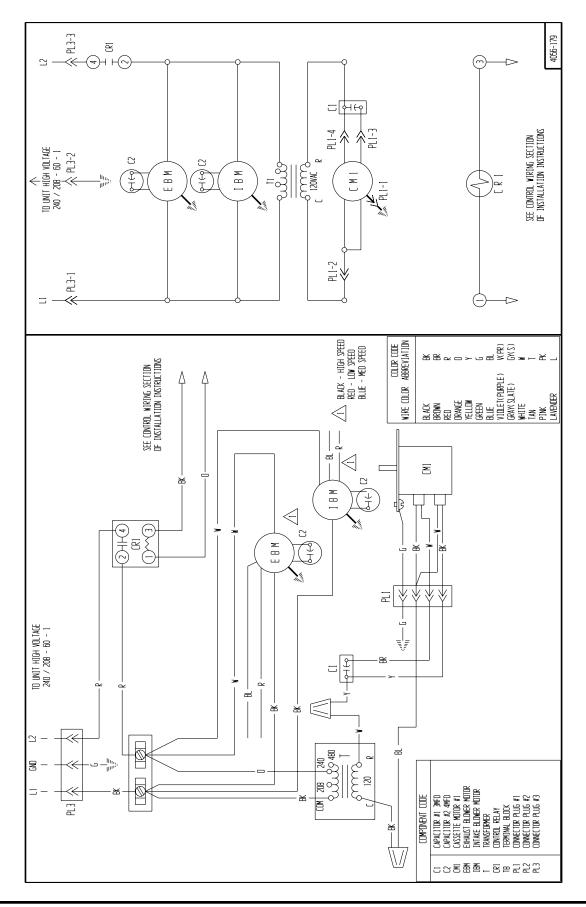
- 1. Inspect mist eliminator/prefilter and clean if necessary. This filter is located in the fresh air intake hood on the front of the unit. This is an aluminum mesh filter and can be cleaned with water and any detergent not harmful to aluminum.
- 2. Inspect wall mount unit filter and clean or replace as necessary. This filter is located either in the unit, in a return air filter grille assembly, or both. If in the unit it can be accessed by removing the lower service door on the front of the unit. If in a return air filter grille, by hinging the grille open to gain access.
- 3. Inspect energy recovery ventilator for proper wheel rotation and dirt buildup. This can be done in conjunction with Item 2 above. Energize the energy recovery ventilator after inspecting the filter and observe for proper rotation and/or dirt buildup.

- 4. Recommended energy recovery wheel cleaning procedures follow: Disconnect all power to unit. Remove the lower service door of the wall mount unit to gain access to the energy recovery ventilator.
- 5. Remove the front access panel on the ventilator. Unplug amp connectors to cassette motors. Slide energy recovery cassette out of ventilator.
- 6. Use a shop vacuum with brush attachment to clean both sides of the energy recovery wheels.
- 7. Reverse shop vacuum to use as a blower and blow out any residual dry debris from the wheel.
- NOTE: Discoloration and staining of the wheel does not affect its performance. Only excessive buildup of foreign material needs to be removed.
- 8. If any belt chirping or squealing noise is present, apply a small amount of LPS-1 or equivalent dry film lubricant to the belt.


ANNUAL MAINTENANCE

- 1. Inspect and conduct the same procedures as outlined under Quarterly Maintenance.
- 2. To maintain peak latent (moisture) removal capacity, it is recommended that the energy recovery wheels be sprayed with a diluted nonacid based evaporator coil cleaner or alkaline detergent solution such as 409.
- NOTE: Do not use acid based cleaners, aromatic solvents, temperatures in excess of 170° F or steam. Damage to the wheel may result.


Do not disassemble and immerse the entire heat wheel in a soaking solution, as bearing and other damage may result.


- 3. Rinse wheel thoroughly after application of the cleaning solution, and allow to drain before reinstalling.
- 4. No re-lubrication is required to heat wheel bearings of the drive motor, or to the intake and exhaust blower motors.
- 5. If any belt chirping or squealing noise is present, apply a small amount of LPS-1 or equivalent dry film lubricant to the belt.

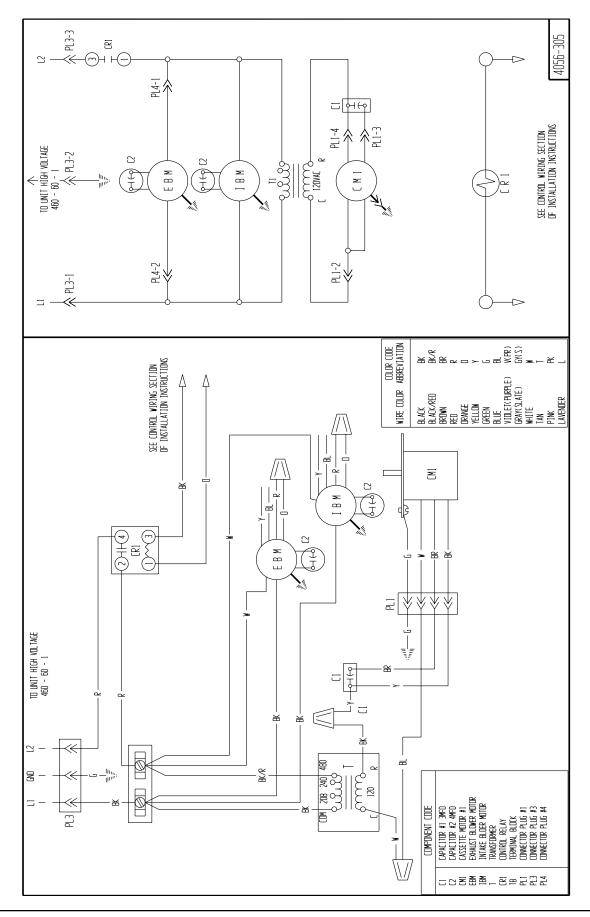

FIGURE 5 HUB ASSEMBLY WITH BALL BEARINGS

FIGURE 6 BELT REPLACEMENT INSTRUCTIONS

