
INSTALLATION INSTRUCTIONS

WATER-TO-WATER GEOTHERMAL HEAT PUMP

Models:

GW024 GW036 GW048 GW060 GW070

Earth Loop Fluid Temperatures 25° – 110°F Ground Water Temperatures 45° – 75°

NOTE: Models covered by this installation manual are <u>NOT</u> for use as pool heaters or in marine applications.

BMC, Inc. Bryan, Ohio 43506	Manual: Supersedes: Date:	

CONTENTS

Getting Other Informations and Publications3
General Information Water Source Nomenclature4
Application and LocationGeneral7Shipping Damage7Application7Location7Unit Stacking7Additional Consideration7Required Steps after Final Placement7ANSI Z535.5 Definitions8
Power & Control Wiring High Voltage Line Supply
Relocatable Control Panel 10
Wiring - Low Voltage Dual Primary & Low Voltage Connections
Piping Access to Unit Loop, Load & Desuperheater Connections
Load Side Water Connections Sizing Buffer Tanks for Zoned Systems
Ground Loop (Earth Coupled Water Loop App.) Circulation System Design16
Ground Water (Well System App.) Water Connections

Desuperheater (Potable Hot Water Assist)	~~
Description	
Electrical Connection	
Installation Procedure - General	
Operation of Heat Recovery Unit	
Start Up & Check Out	24
Maintenance	
Control Board Sequence of Operation	28
Sequence of Operation	
Part Load Cooling	29
Full Load Cooling	29
Part Load Heating	
Full Load Heating	29
Geothermal Logic Control	
High & Low Pressure Switch	
Flow Switch	
Over/Under Voltage Protection	
Intelligent Reset	
Alarm Output Pressure Service Ports	
Checking Refrigerant Quantity	30
Refrigerant Charge	~ 4
General	
R-410A & Topping Off System Charge	
Safety Practices	31
Troubleshooting Table	45
Service Hints, Unbrazing System Components & Compress Solenoid	
Ground Source HP Perf. Report & Checklist - Perform. Unit 47 &	48

Figures

iyures	
Figure 1	Unit Dimensions
Figure 2	Wire Routing to Control Panel9
Figure 3	Changing Water Entrance Location 10
Figure 4	Control Wiring (Control Panel & Conduits) 11
Figure 5	Typical Load Side Hydronic System 15
Figure 6	Circulator System Design16
Figure 7A	Circulation System Design 17
Figure 7B	Model DORFC-1 Flow Center 17
Figure 7C	Model DORFC-2 Flow Center 17
Figure 8	Water Connection Components 19
Figure 9	Water Coil Cleaning21
Figure 10	Desuperheater Wiring Diagram25
Figure 11	One-Tank Desuperheater System26
Figure 12	Two-Tank Desuperheater System
Figure 13	Inlet & Outlet Thermistor Temp Curves 28
Figure 14	System Component Locations
Figure 15	Electrical Control Locations
Figure 16	Cooling Cycle Diagram
	Heating Cycle Diagram
Figures 18	-22 Pressure Tables

Tables

Table 1	Rated Flow Rates for Various Fluids4
Table 2	Electrical Specifications5
Table 3	Source Side Water Coil Pressure Drops 5
Table 4	Operating Voltage Range12
Table	Low Voltage Connections for DDC Controls . 12

GETTING OTHER INFORMATION AND PUBLICATIONS

These publications can help you install the air conditioner or heat pump. You can usually find these at your local library or purchase them directly from the publisher. Be sure to consult current edition of each standard.

National Electrical CodeANSI/NFPA 70

Standard for the Installation.....ANSI/NFPA 90A of Air Conditioning and Ventilating Systems

Standard for Warm Air.....ANSI/NFPA 90B Heating and Air Conditioning Systems

Load Calculation for ResidentialACCA Manual J Winter and Summer Air Conditioning

Duct Design for Residential.....ACCA Manual D Winter and Summer Air Conditioning and Equipment Selection

Closed-Loop/Ground Source Heat PumpIGSHPA Systems Installation Guide

Grouting Procedures for Ground-Source.......IGSHPA Heat Pump Systems

Soil and Rock Classification forIGSHPA the Design of Ground-Coupled Heat Pump Systems

Ground Source Installation StandardsIGSHPA

Closed-Loop Geothermal SystemsIGSHPA – Slinky Installation Guide

Radiant Systems Design	RPA
	ASSE

FOR MORE INFORMATION, CONTACT THESE PUBLISHERS:

ACCA Air Conditioning Contractors of America 1712 New Hampshire Avenue Washington, DC 20009 Telephone: (202) 483-9370 Fax: (202) 234-4721

ANSI American National Standards Institute 11 West Street, 13th Floor New York, NY 10036 Telephone: (212) 642-4900 Fax: (212) 302-1286

ASHRAE American Society of Heating Refrigerating, and Air Conditioning Engineers, Inc. 1791 Tullie Circle, N.E. Atlanta, GA 30329-2305 Telephone: (404) 636-8400 Fax: (404) 321-5478

NFPA National Fire Protection Association Batterymarch Park P.O. Box 9101 Quincy, MA 02269-9901 Telephone: (800) 344-3555 Fax: (617) 984-7057

IGSHPA International Ground Source Heat Pump Association 490 Cordell South Stillwater, OK 74078-8018

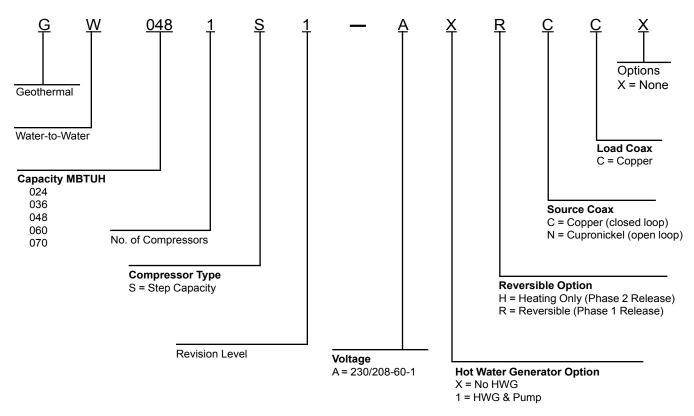
Radiant Professionals Association www.radiantprofessionalsalliance.org

IAPMO

www.iampo.org

American Society of Sanitary Engineering www.asse-plumbing.org

World of Plumbing Council www.worldplumbing.org


EPA WaterSense Partner www.epa.gov/watersense

American Society of Mechanical Engineers www.asme.org

NSF International www.nsf.org

United Association (Union of Plumbers, Fitters, Welders & HVAC Service Techs. www.ua.org

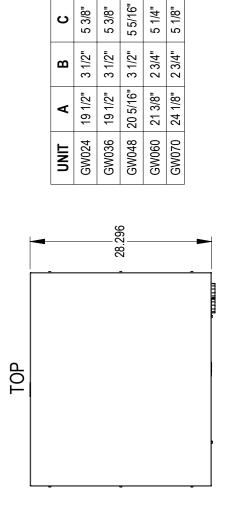
GEO WATER-TO-WATER HEAT PUMP MODEL NUMBER NOMENCLATURE

Loop circulating pumps – Source & Load are field-installed external of the GSH unit for ease of installation, maintenance and service.

APPLICATION	SOURCE			MODEL		
	SOURCE	GW024	GW036	GW048	GW060	GW070
Ground Loop (15% Methanol, Propylene, Glycol, etc.	Loop	7	9	11	13	15
	Load	7	9	11	13	16
Ground Water	Loop	7	9	11	13	15
	Load	7	9	11	13	16

TABLE 1 RATED FLOW RATES FOR VARIOUS FLUIDS

TABLE 2 ELECTRICAL SPECIFICATIONS


MODEL	GW024	GW036	GW048	GW060	GW070		
Electrical Ratings (Volts/Hz/Phase)	208/230-60-1						
Operating Voltage Range			253-197 VAC				
Minimum Circuit Ampacity	16.9	21.4	28.8	36.1	39.4		
+Field Wire Size	10	8	6	6	6		
Ground Wire Size	12	12	10	10	10		
++Delay Fuse of Circuit Breaker Max.	25	35	50	60	60		
COMPRESSOR							
Volts			208/230-60-1				
Rated Load Amps (230/208)	8.2 / 9.2	12.2 / 14.0	17.6 / 20.3	21.8 / 24.1	29 / 32		
Branch Circuit Selection Current	11.7	15.3	21.2	27.1	29.7		
Locked Rotor Amps (230/208)	58.3	83.0	104.0	152.9	179.2		
Flow Center (Based upon DORFC-2)		~	•	· · · · · · · · · · · · · · · · · · ·			
Volts	208/230-60-1						
Amps	2.14						
Desuperheat Pump Motor							
Volts	208/230-60-1						
Amps	0.15						

+75°C copper wire ++ HACR type circuit breaker

(Based upon 15% Methanol in Heating Mode @ 50°F)										
Model	GW	W024 GW036		GW036 GW048 0		GW	060	GW070		
GPM	PSID	Ft. Hd.	PSID	Ft. Hd.	PSID	Ft. Hd.	PSID	Ft. Hd.	PSID	Ft. Hd.
4	.93	2.15								
5	1.55	3.58	1.57	3.62						
6	2.17	5.01	2.19	5.05	1.63	3.75				
7	2.79	6.44	2.81	6.48	2.21	5.10				
8	3.48	8.03	3.56	8.21	2.80	6.45	1.76	4.06		
9	4.17	9.62	4.31	9.94	3.38	7.80	2.20	5.08		
10		0	5.18	11.95	4.12	9.49	2.64	6.09	2.6	6.07
11			6.05	13.96	4.85	11.19	3.08	7.11	3.1	7.17
12					5.70	13.15	3.58	8.25	3.6	8.28
13					6.55	15.11	4.07	9.39	4.1	9.39
14							4.63	10.67	4.6	10.58
15							5.18	11.95	5.1	11.77
16							5.74	13.23	5.7	13.12
17									6.3	14.46
18									6.9	15.81

TABLE 3SOURCE SIDE WATER COIL PRESSURE DROPS(Based upon 15% Methanol in Heating Mode @ 50°F)

FIGURE 1 - UNIT DIMENSIONS

20 5/16" 3 11/16"

5 7/16"

5 1/2"

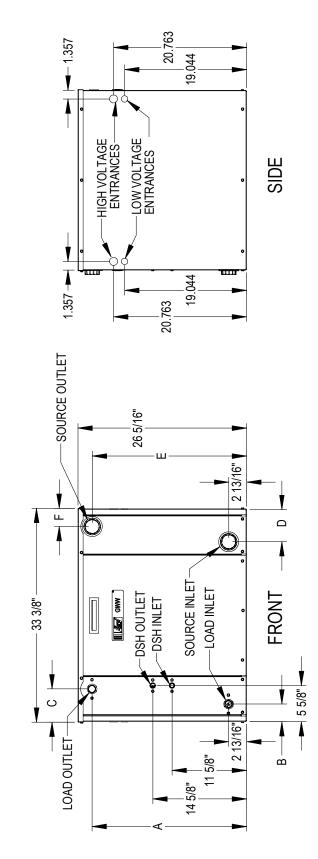
5 1/8"

3" 2 5/8"

21 3/8" 24 1/16"

μ

3 9/16" 3 1/2"


19 7/16" 19 7/16"

5 1/2"

ш

ш

۵

MIS-3160

Manual 2100-583G Page 6 of 48

NOTE: MODELS COVERED BY THIS INSTALLATION MANUAL ARE <u>NOT</u> FOR USE AS A POOL HEATER OR IN MARINE APPLICATIONS

GENERAL

Each unit is shipped internally wired, requiring both groundsource and load-side water piping, aquastat wiring, 230/208 volt AC power wiring, and optional desuperheater piping. The equipment covered in this manual is to be installed by trained, experienced service and installation technicians.

These instructions and any instructions packaged with any separate equipment required to make up the entire heat pump system should be carefully read before beginning the installation. Note particularly any tags and/or labels attached to the equipment.

While these instructions are intended as a general recommended guide, they do not in any way supercede any national and/or local codes. Authorities having jurisdiction should be consulted before the installation is made.

SHIPPING DAMAGE

Upon receipt of the equipment, the carton should be checked for external signs of shipping damage. If damage is found, the receiving party must contact the last carrier immediately, preferably in writing, requesting inspection by the carrier's agent.

APPLICATION

Capacity of the unit for a proposed installation should be based on heat loss calculations made in accordance with methods of the Air Conditioning Contractors of America. The piping systems should be installed in accordance all local, state, and federal requirements, and to the references included on Page 3 of this document.

LOCATION

The unit may be installed in a basement, closet, or utility room provided adequate service access is ensured, and equipment will not freeze.

These units are not approved for outdoor installation and therefore must be installed inside structure being conditioned. *Do not locate in areas subject to freezing in the winter, or subject to sweating in the summer.* Prior to setting the unit, consider ease of piping and electrical connections for the unit. Also for units which will be used with a desuperheater, consider the proximity of the unit to the water heater or storage tank. Place the unit on a solid base, preferably concrete, to minimize undesirable noise and vibration. **DO NOT** elevate the base pan on rubber or cork vibration eliminator pads as this will permit the unit base to act like a drum, transmitting objectionable noise.

UNIT STACKING

The GW-Series products are designed to allow them to be stacked up to three units high to lower the amount of installed square footage requirements. Included with unit are tie plates to secure the units together once they are stacked. Remove, then replace the bottom three (3) screws from bottom sides of the upper unit, and the top of the lower unit to apply the tie plate. *NOTE: The tie plates are secured to the front of the control panel cover for shipment.*

ADDITIONAL CONSIDERATION

As an additional measure of safety in regard to the structure, consider installing a drain pan with an alarm switch underneath this water-bearing equipment.

REQUIRED STEPS AFTER FINAL PLACEMENT

The compressor is secured to the unit base for shipping. Although the unit will perform as designed with the compressor secured in place, there may be noticeable additional noise and vibration. To obtain the lowest noise and vibration levels, remove the compressor shipping brackets after the unit is in its final operating location.

To gain access to the compressor shipping brackets, remove both the front and rear service panels. The brackets have "hot pink" labels and are located on the compressor double isolation base at the front and rear of the compressor. The brackets are secured to the unit base with two (2) screws, and secured to the isolation plate with a $\frac{1}{4}$ " nut. Remove and dispose of the two (2) screws and brackets. Reinstall $\frac{1}{4}$ " nut once bracket is removed.

ANSI Z535.5 Definitions:

• DANGER (color RED): Indicate[s] a hazardous situation which, if not avoided, will result in death or serious injury. The signal word "DANGER" is to be limited to the most extreme situations. DANGER [signs] should not be used for property damage hazards unless personal injury risk appropriate to these levels is also involved.

• WARNING (color ORANGE): Indicate[s] a hazardous situation which, if not avoided, could result in death or serious injury. WARNING [signs] should not be used for property damage hazards unless personal injury risk appropriate to this level is also involved.

• CAUTION (color YELLOW): Indicate[s] a hazardous situation which, if not avoided, could result in minor or moderate injury. CAUTION [signs] without a safety alert symbol may be used to alert against unsafe practices that can result in property damage only.

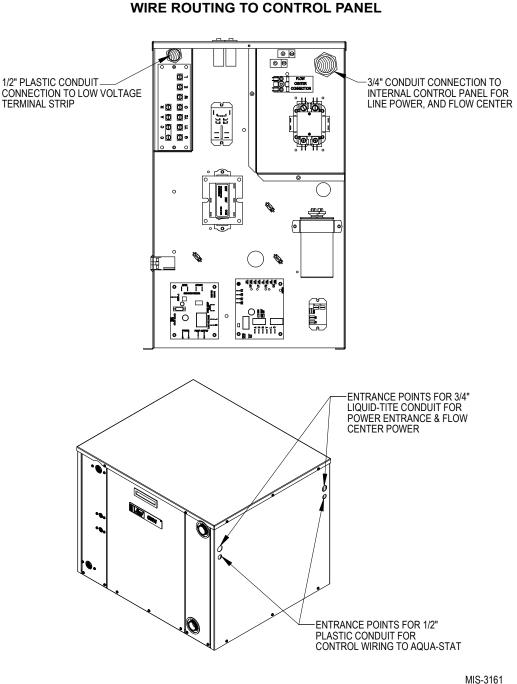
• NOTICE (color BLUE): [this header is] preferred to address practices not related to personal injury. The safety alert symbol shall not be used with this signal word. As an alternative to "NOTICE" the word "CAUTION" without the safety alert symbol may be used to indicate a message not related to personal injury.

BEFORE DRILLING OR DRIVING ANY SCREWS INTO CABINET, CHECK TO ENSURE SCREW WILL NOT HIT ANY INTERNAL PARTS, REFRIGERANT LINES, WATER LINES, OR ELECTRICAL WIRES/COMPONENTS.

FAILURE TO FOLLOW THIS CAUTION MAY RESULT IN PERSONAL INJURY. USE CARE AND WEAR APPROPRIATE PROTECTIVE CLOTHING, SAFETY GLASSES AND PROTECTIVE GLOVES WHEN SERVICING UNIT AND HANDLING PARTS.

ACAUTION

ALL GEOTHERMAL EQUIPMENT IS DESIGNED FOR INDOOR INSTALLATION ONLY. DO NOT INSTALL OR STORE UNIT IN A CORROSIVE ENVIRONMENT OR IN A LOCATION WHERE TEMPERATURE AND HUMIDITY ARE SUBJECT TO EXTREMES. EQUIPMENT IS NOT CERTIFIED FOR OUTDOOR APPLICATIONS. SUCH INSTALLATION WILL VOID ALL WARRANTIES.


NOTICE

HIGH VOLTAGE LINE SUPPLY

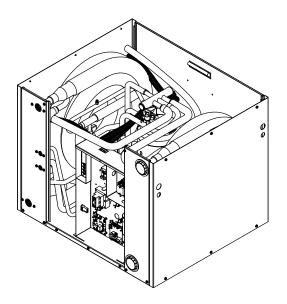
Supplied with the unit is an adequate length of $\frac{3}{4}$ " liquid-tite conduit and fittings to run internally within the sheet metal chassis from the control panel to one of four (4) $1\frac{1}{8}$ " holes in the chassis sides (front/rear corners) for line voltage wires to be ran through. See Figures 2 & 4.

LOW VOLTAGE CONTROL WIRES

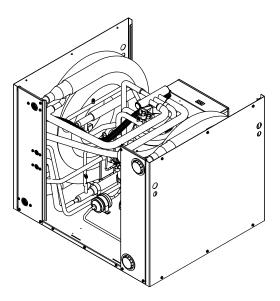
Supplied with the unit is an adequate length of $\frac{1}{2}$ " plastic conduit and fittings to run internally within the sheet metal chassis from the low voltage box to one of four (4) $\frac{7}{8}$ " holes in the chassis sides (front/rear corners) for thermostat wires to be ran through. See Figures 2 & 4.

FIGURE 2

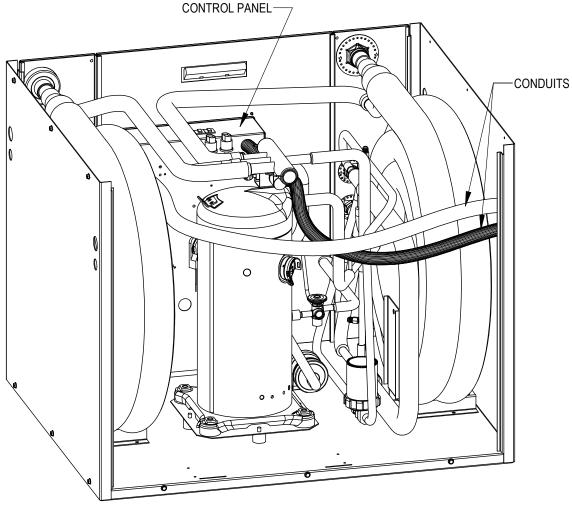
RELOCATABLE CONTROL PANEL


The control panel of the GW-Series products can be relocated to best suit the installation. It is factory shipped where the control panel is located on the same side of the unit the water connections are located. *NOTE: the control panel can be moved to the rear of the unit opposite to where the water connections are located.* See Figure 3.

- 1. Remove both front and rear service panels.
- 2. Remove control panel cover.


- 3. Remove four (4) screws securing control panel to unit base.
- 4. Lift and turn control panel sideways guiding it along the right side of the compressor toward the rear of the unit.
- 5. Re-secure to unit base at new location.

CONTROL PANEL LOCATIONS


FRONT - AS SHIPPED LOCATION

OPTIONAL REAR LOCATION

MIS-3163

FIGURE 4 WIRE ENTRANCE CONDUITS

The GW-Series Geothermal Water-to-Water Heat Pumps contain 2-stage compressors. This will need to be thought through in planning and ordering the Aquastat control.

The two-stage compressor will not necessarily affect the net water temperature, but can give great benefit of reducing the required number of compressor cycles, especially under lower-load conditions.

In selecting the Aquastat, and depending upon the particular installation, there are different ways to utilize this.

1. Select an Aquastat with an outdoor temperature sensor, and program the Aquastat to only energize the "Y2" signal when outdoor temperatures fall below a certain level.

- 2. Program a length of time to offset Stage #2 being energized following Stage #1 call. This will increase system run time/thermal consistency, and minimize the start/stop cycles on the compressor, and minimize short cycling.
- 3. Program the Aquastat to only energize "Y2" when temperature of water cannot be held or increased with only "Y1" energized (only bring on "Y2" with further temperature fall).
- 4. A jumper can be installed from "Y1" to "Y2" changing the system to a single stage system. However, this is not recommended for longevity of equipment service life or energy efficiency.

UNIT MAIN POWER WIRING

This equipment requires a nominal 208/230-60-1 power supply for proper operation. Line voltage connections are made at the compressor contactor as noted by the wiring diagram. Unit main power will route into the control panel to the contactor through the supplied 3/4" Liquid Tite conduit from one of the four (4) selectable electrical entrance points.

230/208, 1-PHASE & 3-PHASE EQUIPMENT DUAL PRIMARY VOLTAGE TRANSFORMERS

All Equipment leaves the factory wired on 240 Volt transformer tap. For 208 Volt operation, reconnect from 240 Volt to 208 Volt tap. The acceptable operating voltage range for the 240V and 208V transformer taps are as noted in Table 4.

TABLE 4OPERATING VOLTAGE RANGE

ТАР	RANGE
240V	253 - 216
208V	220 - 187

NOTE: The voltage should be measured at the field power connection point in the unit, and while the unit is operating at full load (maximum amperage operating conditions).

For low voltage connections between the Aquastat and the geothermal heat pump, a low voltage terminal strip is factory mounted in the heat pump.

LOW VOLTAGE CONNECTIONS

These units use a grounded 24V AC low voltage circuit.

- "R" terminal is 24 VAC hot.
- "C" terminal is 24 VAC grounded.
- "Y1" terminal is the *compressor part load input*.
- "Y2" terminal is the *compressor full load input* ("Y1" *must also be energized along with* "Y2").
- "O" terminal is the reversing valve input. The reversing valve must be energized for cooling mode.
- "A" terminal is 24 VAC output to external flow center control, or to source water solenoid coil.

"L" terminal is compressor lockout **output**. This terminal is activated on a high pressure, low pressure, or flow switch trip on the Geothermal Logic Control. This is a 24 VAC output.

LOW VOLTAGE CONNECTIONS FOR DDC CONTROLS				
Heating Part Load	Energize "Y1"			
Heating Full Load	Energize "Y1", "Y2"			
Cooling Part Load	Energize "Y1", "O"			
Cooling Full Load	Energize "Y1", "Y2", "O"			

Water Piping to and from the unit enters the unit cabinet on either the front or rear-side through the ability to relocate the control panel. See Figure 3 of the cabinet.

LOOP CONNECTIONS are a special double o-ring fitting with a retainer nut that secures it in place. (It is the same style of fitting used for the flow center connection on ground loop applications.)

NOTE: All double o-ring fittings require "hand tightening only". Do not use a wrench or pliers as retainer nut can be damaged with excessive force.

NOTE: Apply provided petroleum jelly to o-rings to prevent damage and to aid in insertion.

Various fittings are available so you may then connect to the unit with various materials and methods. These methods include 1" barbed fitting (straight and 90°), 1" MPT (straight and 90°), and $1\frac{1}{4}$ " hot fusion fitting (straight only). See Product Specification Sheet.

LOAD CONNECTIONS are standard 1" Female Pipe Thread allowing for any standard 1" Male Pipe Threaded fittings to be utilized to make the connection.

DESUPERHEATER CONNECTIONS are standard ½" Female Pipe Thread allowing for any standard ½" Male Pipe Threaded fittings to be utilized to make the connection.

LOAD SIDE WATER CONNECTIONS

The use of a buffer tank is highly recommended on the load side of the GW-Series Water-to-Water heat pumps. If heat pump sizing at all the various conditions is not perfectly matched to the load, you are likely to short cycle the refrigerant system on high or low pressure controls. Buffer tanks provide thermal mass that allows the rate of generation by the heat source to be significantly different from the rate of dissipation by the distribution system. They are an essential component in any hydronic system that uses a low thermal mass on/off heat source in combination with a multiple-zone application.

SIZING BUFFER TANKS FOR ZONED SYSTEMS

The required volume of a buffer tank depends on the rate of heat input and release, as well as the allowed temperature rise of the tank from when the heat source is turned on, to when it is turned off. The greater the tanks volume, and the wide the operating temperature differential, the longer the heat source cycle length.

The following fomula can be used to calculate the volume necessary when given a specified minimum heat source ontime, tank operating differential, and rate of heat transfer:

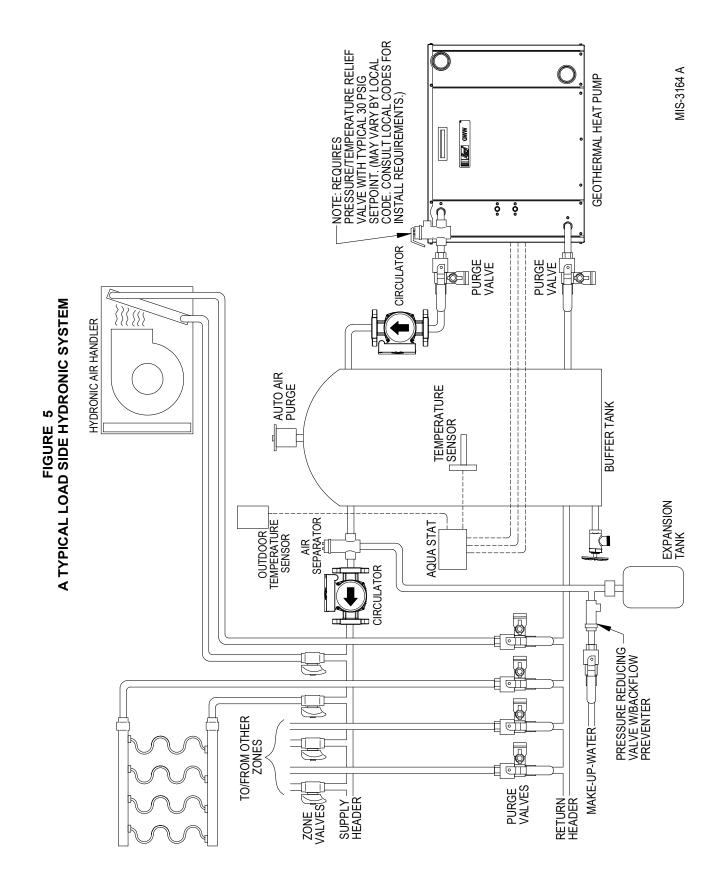
$$v = \frac{t \times Qheatsource}{500 \times \Delta T}$$

Where:

v = required volume of the buffer tank (gallons)

t = desired duration of the heat source's "on cycle" (minutes)

Qheatsource = heat output rate of the heat source (Btu/h)


Qload = rate of heat extraction from the tank (Btu/h)

 ΔT = temperature rise of the tank from when the heat source is turned on to when it is turned off (°F).

For example, assume it's desired that a heat pump operates with a minimum compressor on-cycle duration of 10 minutes. The heat pump, when on, supplies 50,000 Btu/h. The compressor turns on when the buffer tank drops to 100°F, and off when the tank reaches 120°F. What is the necessary buffer tank volume to accomplish this?

If a tank larger than the minimum required volume is used, the on-cycle length could be increased, or the temperature differential setpoint could be reduced

The wider the temperature differential, and the greater the volume of the tank, the longer the heat source on-cycle will be.

GROUND LOOP (EARTH COUPLED WATER LOOP APPLICATIONS)

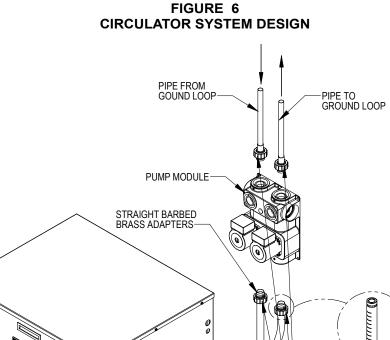
NOTE: Unit shipped from factory with 75 PSIG low pressure switch wired into control circuit and must be rewired to 55 PSIG low pressure switch for ground *loop applications.* This unit is designed to work on earth coupled water loop systems, however, these systems operate at entering water (without antifreeze) temperature with pressures well below the pressures normally experienced in water well systems.

THE CIRCULATION SYSTEM DESIGN

Equipment room piping design is based on years of experience with earth coupled heat pump systems. The design eliminates most causes of system failure.

The heat pump itself is rarely the cause. Most problems occur because designers and installers forget that a ground loop "earth coupled" heat pump system is NOT like a household plumbing system.

Most household water systems have more than enough water pressure either from the well pump or the municipal water system to overcome the pressure of head loss in $\frac{1}{2}$ inch or ³/₄ inch household plumbing. A closed loop earth coupled heat pump system however, is separated from the pressure of the household supply and relies on a small, low wattage pump to circulate the water and antifreeze solution through the earth coupled heat pump and equipment room components.


The small circulator keeps the operating costs of the system to a minimum. However, the performance of the circulator MUST be closely matched with the pressure head loss of the entire system in order to provide the required flow through the heat pump. Insufficient flow through the heat exchanger is one of the most common causes of system failure. Proper system piping design and circulator selection will eliminate the problem.

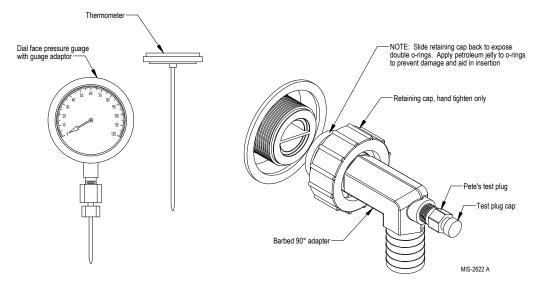
> **OPTIONAL VISUAL** FLOW METER

NOTE: APPLY PETROLEUM JELLY TO O-RINGS TO PREVENT DAMAGE AND AID IN INSERTION

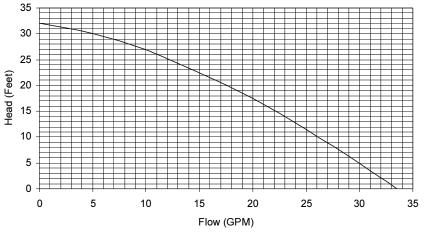
MIS-3165

NOTE: IF USED SUPPORT WITH A FIELD FABRICATED WALL BRACKET

0


WATER OUT

WATER IN


HOSE CLAMPS

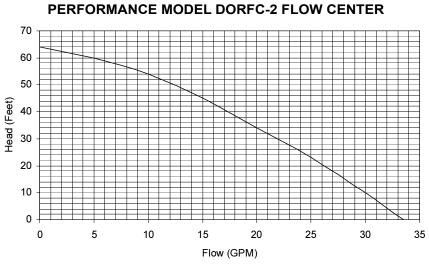

1" FLEXIBLE HOSE

FIGURE 7C

GROUND WATER (WELL SYSTEM APPLICATIONS)

NOTE: It is highly recommended on ground water systems (pump & dump) that a cupronickel coaxial coil is utilized on the source side of the system. Not doing so, may void the product warranty due to aggressive/ corrosive/highly oxygenated water attacking the copper coaxial water coil.

NOTE: Unit shipped from factory with 75 PSIG low pressure switch wired into control circuit for ground water applications.

WATER CONNECTIONS

It is very important that an adequate supply of clean, non-corrosive water at the proper pressure be provided before installation is made. Insufficient water, in the heating mode for example, will cause the low pressure switch to trip, shutting down the heat pump. In assessing the capacity of the water system, it is advisable that the complete water system be evaluated to prevent possible lack of water or water pressure at various household fixtures whenever the heat pump turns on. All plumbing to and from the unit is to be installed in accordance with local plumbing codes. The use of plastic pipe, where pemissible, is recommended to prevent electrolytic corrosion of the water pipe. Because of the relatively cold temperatures encountered with well water, it is strongly recommended that the water lines connecting the unit be insulated to prevent water droplets from condensing on the pipe surface.

Refer to piping, Figure 8. Slow open/close <u>Electrically</u> <u>Actuated Valve</u> with *End Switch* (2), 24V, provides on/off control of the water flow to the unit. Refer to the wiring diagram for correct hookup of the valve solenoid coil.

Constant Flow Valve (3) provides correct flow of water to the unit regardless of variations in water pressure.

Observe the water flow direction indicated by the arrow on the side of the valve body.

Strainer (8) installed upstream of *water coil inlet* to collect foreign material which would clog the flow valve orifice.

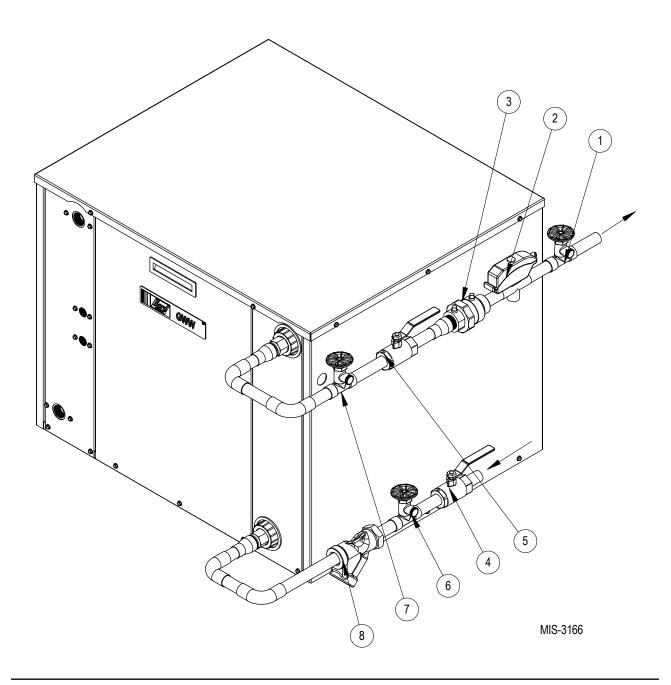
The figure shows the use of shutoff valves (4) and (5), on the in and out water lines to permit isoation of the unit from the plumbing system should future service work require this. Globe valves should not be used as shutof valves because of the excessive pressure drop inherent in the valve design. Instead, use either gate or ball valves as shutoffs, so as to minimize pressure drop.

Hose bib (6) and (7), and tees should be included to permit acid cleaning the refrigerant-to-water coil should such cleaning be required. See **WATER CORROSION**.

Hose bib (1) provides access to the system to check water flow through the constant flow valve to ensure adequate water flow through the unit. A water meter is used to check the water flow rate.

WELL PUMP SIZING

Strictly speaking, sizing the well pump is the responsibility of the well drilling contractor. It is important, however, the HVAC contractor be familiar with the factors that determine what size pump will be required. Rule of thumb estimates will invariably lead to under or oversized well pumps. Undersizing the pump will result in inadequate water to the whole plumbing system, but with especially bad results to the heat pump - NO HEAT/ NO COOL calls will result. Oversized pumps will short cycle and could cause premature pump motor or switch failures.


The well pump must be capable of supplying enough water and at an adequate pressure to meet competing demands of water fixtures. The well pump must be sized in such a way that three requirements are met:

- 1. Adequate flow rate in GPM.
- 2. Adequate pressure at the fixture.
- 3. Able to meet established flow rates and pressures from the depth of the well-feet of lift.

GROUND WATER (WELL SYSTEM APPLICATIONS)

The pressure requirements put on the pump are directly affected by the diameter of pipe being used, as well as the water flow rate through the pipe. The worksheet included in Manual 2100-078 should guarantee the well pump has enough capacity. It should also ensure that the piping is not undersized, which would create too much pressure due to friction loss. High pressure losses due to undersized pipe will reduce efficiency and require larger pumps and could also create water noise problems.

FIGURE 8 WATER CONNECTION COMPONENTS

GROUND WATER (WELL SYSTEM APPLICATIONS)

SYSTEM START UP PROCEDURE FOR GROUND WATER APPLICATIONS

- 1. Be sure main power to the unit is OFF at disconnect.
- 2. Set thermostat system switch to OFF.
- 3. Move main power disconnect to ON. Except as required for safety while servicing *DO NOT OPEN THE UNIT DISCONNECT SWITCH*.
- 4. Fully open the manual inlet & outlet valves, and manually open water solenoid valve on the source side.

 Check water flow.
 a. Connect a water flow meter to the drain cock between the constant flow valve and the solenoid valve.
 b. Check the water flow rate through the constant flow valve and the solenoid valve. Run a hose from the flow meter to a drain or sink. Open the drain cock.
 c. When water flow is okay, close the drain cock and remove the water flow meter. The unit is now ready to start.

6. Start the unit in heating mode by switching on the Aquastat.

a. Make sure the water solenoid valve actuated/ opened.

- 7. Check the system refrigerant pressures against the refrigerant pressure table located on the backside of the system service door at the corresponding source and load flow rates and enetering water temperatures. If the refrigerant pressures do not match, check for water flow issues, and then a refrigeration system problem.
- 8. Switch the Aquastat/thermostat to cooling mode and again verify water solenoid actuation, and refrigerant pressures.

NOTE: If a charge problem is determined (high or low):

- A. Check for possible refrigerant loss.
- B. Reclaim all remaining refrigerant.
- C. Evacuate unit down to 29" of vacuum.
- D. Recharge unit with refrigerant by weight to the serial plate, as this is the only way to ensure proper charge.

WATER CORROSION

Two concerns will immediately come to light when considering a water source heat pump, whether for ground water or for a ground loop application: Will there be enough water? And, how will the water quality affect the system?

Water quantity is an important consideration and one which is easily determined. The well driller must perform a pump down test on the well according to methods described by the National Well Water Association. This test, if performed correctly, will provide information on the rate of flow and on the capacity of the well. It is important to consider the overall capacity of the well when thinking about a water source heat pump because the heat pump may be required to run for extended periods of time.

The second concern, about water quality, is equally important. Generally speaking, if the water is not offensive for drinking purposes, it should pose no problem for the heat pump. The well driller or local water softening company can perform tests which will determine the chemical properties of the water.

Water quality problems will show up in the heat pump in one or more of the following ways:

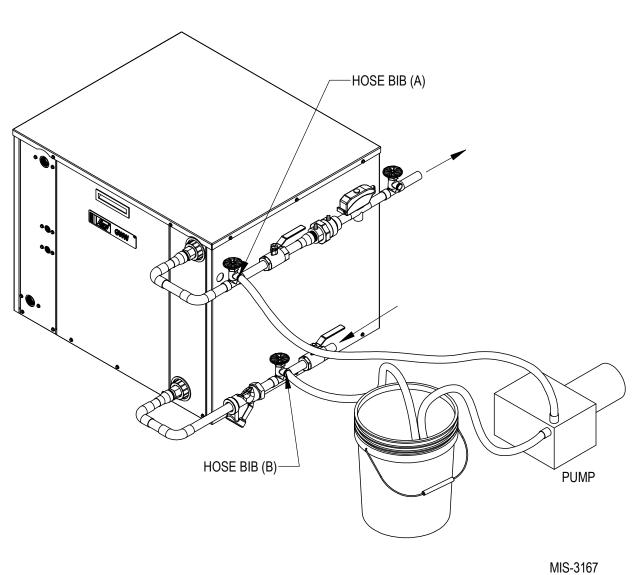
- · Decrease in water flow through the unit.
- Decreased heat transfer of the water coil (entering to leaving water temperature difference is less).

There are four main water qualtiy problems associated with ground water. These are:

1. **Biological Growth** This is the growth of microscopic organisms in the water and will show up as a slimy deposit throughout the water system. Shock treatment of the well is usually required and this is best left to the well driller. The treatment consists of injecting chlorine into the well casing and flushing the system until all growth is removed.

2. **Suspended Particles in the Water** Filtering will usually remove most suspended particles (fine sand, small gravel) from the water. The problem with suspended particles in the water is it will erode metal parts, pumps, heat transfer coils, etc. As long as the filter is cleaned and periodically maintained, suspended particles should pose no serious problem. Consult with your well driller.

3. **Corrosion of Metal** Corrosion of metal parts results from either highly corrosive water (acid water, generally not the case with ground water), or galvanic reaction between dissimilar metals in the presence of water. By using plastic plumbing or dielectric unions, galvanic reaction is eliminated. The use of corrosion resistant materials such as a Cupronickel Water Coil through the water system will reduce corrosion problems significantly.


4. Scale Formation Of all the water problems, the formation of scale by ground water is by far the most common. Usually due to the formation of calcium carbonate, but magnesium carbonate or calcium sulfate may also be present. Carbon dioxide gas (CO2), the carbonate of calcium and magnesium carbonate, is very soluble in water. It will remain dissoved in the water until some outside factor upsets the balance. This outside influence may be a large change in water temperature or pressure. When this happens, enough carbon dioxide gas combines with the dissolved calcium or magnesium in the water and falls out of solution until a new balance is reached. The change in temperature that this heat pump produces is usually not high enough to cause the dissoved gas to fall out of solution. Likewise, if pressure drops are kept to a reasonable level, no precipitation of carbon dioxide should occur.

REMEDIES OF WATER PROBLEMS

Water Treatment. Water treatment can usually be economically justified for water loop systems. However, because of the large amounts of water involved with a ground water system, water treatment is generally too expensive. Acid Cleaning the Water Coil or Heat Pump Recovery

Unit. If scaling of the coil is strongly suspected, the coil can be cleaned with a solution of Phosphoric Acid (food grade acid). Follow the manufacturer's directions for mixing, use, storage, etc. Refer to the "Cleaning Water Coil", Figure 9. The acid solution can be introduced in the heat pump coil through the hose bib A. Be sure the isolation valves are closed to prevent contamination of the rest of the system by the coil. The acid should be pumped from a bucket into the hose bib B. Follow the manufacturer's directions for the product used as to how long the solution is to be circulated, but it is usually circulated for a period of several hours.

FIGURE 9 WATER COIL CLEANING

LAKE AND POND INSTALLATIONS

Lakes and ponds can provide a low cost source of water for heating and cooling with a ground water heat pump. Direct usage of the water without some filtration is not recommended as algae and turbid water can foul the water to refrigerant heat exchanger. Instead, there have been very good results use a dry well dug next to the water line or edge. Normal procedure in installing a dry well is to backhoe a 15 to 20 foot hole adjacent to the body of water (set backhoe as close to water's edge as possible). Once excavated, a perforated plastic casing should be installed with gravel backfill placed around the casing. The gravel bed should provide adequate filtration of the water to allow good performance of the ground water heat pump.

The following is a list of recommendations to follow when installing this type of system:

- A. A lake or pond should be at least 1 acre (40,000 square feet) in surface area for each 50,000 BTUs of ground water heat pump capacity or have 2 times the cubic feet size of the dwelling that you are trying to heat (includes basement if heated).
- B. The average water depth should be at least 4 feet and there should be an area where the water depth is at least 12 to 15 feet deep.
- C. If possible, use a submersible pump suspended in the dry well casing. Jet pumps and other types of suction pumps normally consume more electrical energy than similarly sized submersible pumps. Pipe the unit the same as a water well system.
- D. Size the pump to provide necessary GPM for the ground water heat pump. A 12 GPM or greater water flow rate is required on all models when used on this type system.

- E. A pressure tank should be installed in dwelling to be heated adjacent to the the ground water heat pump. A pressure switch should be installed at the tank for pump control.
- F. All plumbing should be carefully sized to compensate for friction losses, etc., particularly if the pond or lake is over 200 feet from the dwelling to be heated or cooled.
- G. Keep all water lines below low water level and below the frost line.
- H. Most installers use 4-inch field tile (rigid plastic or corrugated) for water return to the lake or pond.
- I. The drain line discharge should be located at least 100 feet from the dry well location.
- J. The drain line should be installed with a slope of 2 inches per 10 feet of run to provide complete drainage of the line when the ground water heat pump is not operating. This gradient should also help prevent freezing of the discharge where the pipe terminates above the frost line.
- K. Locate the discharge high enough above high water level so the water will not back up and freeze inside the drain pipe.
- L. Where the local conditions prevent the use of a gravity drainage system to a lake or pond, instead run standard plastic piping out into the pond below the frost and low water level.

For complete information on water well systems and lake and pond applications, refer to Manual 2100-078 available through your distributor.

DESCRIPTION

The system is designed to heat domestic water using the heat recovered from a water source unit's hot discharge gas.

LOCATION

Because of potential damage from freezing or condensation, the unit must be located in a conditioned space, therefore the unit must be installed indoors. Locate the storage tank as close to the geothermal heat pump and pump module as the installation permits. Keep in mind that water lines should be a maximum of 25 feet long measured one way. Also, the vertical lift should not exceed 20 feet. This is to keep the pressure and heat losses to a minimum.

ELECTRICAL CONNECTION

The desuperheater logic control with the remote thermal sensors are built already hard-wired in the unit control panel (when purchased with desuperheater option). 208/230-60-1 power for the desuperheater pump is supplied with the same power as the compressor. The 24 volt signals needed are also tied in with the compressor call signals.

NOTICE

NEVER ALTER OR PLUG FACTORY INSTALLED PRESSURE RELIEF VALVE ON WATER HEATER OR AUXILIARY TANK

INSTALLATION PROCEDURE – GENERAL

Before beginning the installation, turn off all power supplies to the water heater and unit, and shut off the main water supply line.

TWO TANK – In order to realize the maximum energy savings from the heat recovery system, it is recommended that a second water storage tank be installed in addition to the main water heater. Fossil Fuel fired water heaters must be a two-tank installation.

Tanks specifically intended for hot water storage are available from water heater manufacturers (solar hot water storage tanks). A well insulated electric water heater without the electric heating elements will also make a suitable storage tank.

The size of the storage tank should be as large as space and economy permit but in no event should it be less than one-half of the daily water requirements for the occupants. As a guide in estimating the daily family water requirements, The Department of Energy recommends a figure of 16.07 gallons of hot water per day per individual. For example, a family of four would require 64.3 gallons per day (4 x 16.07).

ONE TANK – The single hot water tank may be a new water heater (sized to 100% of daily water requirements) or the existing water heater in the case of a retrofit installation. The existing water heater should be drained and flushed to remove all loose sediment. This sediment could damage the circulating pump. The bottom heating element should be disconnected.

NOTE: Make sure water heater thermostats are set below 125°F on **One Tank Unit**.

Water Piping - All water piping must adhere to all state and local codes. Refer to piping diagrams for recommended one and two tank installations. Piping connections are $\frac{1}{2}$ nominal copper plumbing.

A cleanable "Y" type strainer should also be included to collect any sediment.

OPERATION OF THE HEAT RECOVERY UNIT

The pump module is a very simple device containing basic controls and a circulating pump. Heat is transferred from the hot refrigerant (discharge gas) to the cool water.

The operation of the Desuperheater Pump Module is controlled first by the operation of the Geothermal Heat Pump and secondly by internal controls with desuperheater logic control. A low voltage signal sent in tandem to the signal to energize the compressor contactor is connected to the desuperheater logic control board, and acts as the primary on/off switch for the circulating pump.

Also connected to this board is a temperature overlimit device which shuts down the desuperheater once inlet water has exceeded 125°F so the water cannot create a scald condition.

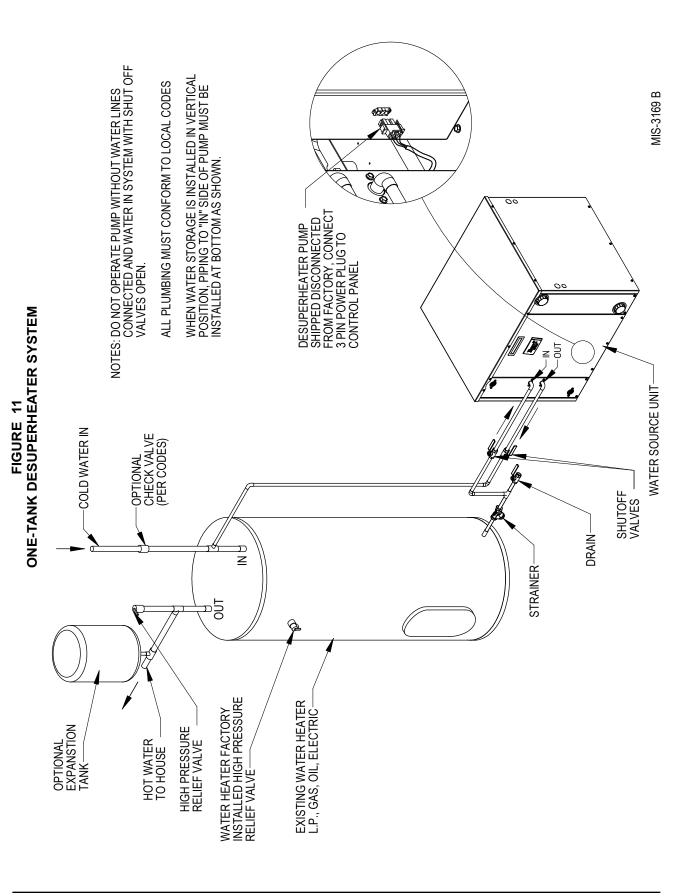
There are also two (2) thermistor sensors connected to the control board. These thermistors are measuring and controlling to ensure there is a positive heat differential across the water being circulated. When operating in Part Load Condition, there are certain conditions (source temperatures versus hot water temperatures) that potential exists where heat could transfer into the refrigeration system instead of the refrigeration system into the hot water. Through the control board logic, these thermistors ensure there is at least a 2° positive differential between entering/leaving water temperatures, and will shut down the pump accordingly.

START UP AND CHECK OUT

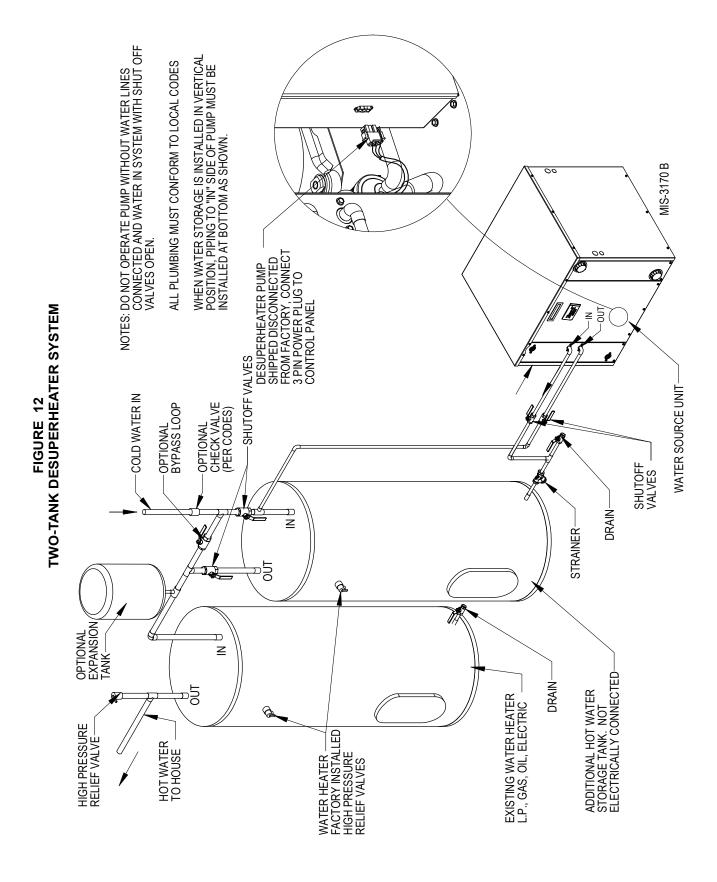
Be sure all shut off valves are open and all power supplies are on. Open a hot water faucet to permit any air to bleed from the plumbing.

NOTE: The inherent design of this pump for maximum efficiency means this pump is not self-priming. It is imperative to check the air has been adequately bled from the system. There is a bleed-port built into desuperheater coil water system that should be utilized after the household water system has been fully restored. The bleed port is located on the water-tube on the top of the desuperheater exchange coil (above cooling expansion valve in the GW-Series products).

Turn ON the heat pump system and verify the circulating pump will operate. Feel the "WATER TO UNIT" and "WATER FROM WATER HEATER" tubes for noticable difference in temperature. Turn OFF the system and verify that the circulating pump stops.


NOTE: When checking the refrigerant operating pressures of the ground source heat pump the desuperheater must be turned off. With the desuperheater operating, a wide variance in pressure can result, giving the service technician the indication there is a charge problem when the unit is operating correctly.

MAINTENANCE


CLEANING THE HEAT EXCHANGER – If scaling of the coil is strongly suspected, the coil can be cleaned with a solution of phosphoric acid (food grade acid or liquid ice machine cleaner {pre-mix phosphoric acid}). Follow the manufacturer's directions for the proper mixing and use of cleaning agent.

COMPRESSOR CONTACTOR SIGNAL LOW VOLTAGE TERMINAL STRIP DESUPERHEATER PUMP CONTROL 3 AMP TAT2T Ο Ο Ц Ш R RED BLACK CONTROL LOGIC Ć -BLACK THERMISTOR WATER SENSORS -BLACK -BLACK THERMISTOR ----NO BLACK NC ● -BLACK RED LIMIT DESUPERHEATER 1,2,3 I Ο Î I Ο PUMP PLUG MIS-2844 A BLACK-RED RED RED PUMP MOTOR BI-METAL TEMPERATURE LIMIT (LT) 208/230-60-1 LINE POWER

FIGURE 10 DESUPERHEATER WIRING DIAGRAM

Manual 2100-583G Page 26 of 48

DESUPERHEATER CONTROL BOARD SEQUENCE OF OPERATION

The desuperheating control board will make a determination whether or not to energize the pump relay inclusive on the control board.

- A. It will constantly monitor inputs from two temperature sensors, Inlet & Outlet water sensors.
- B. It will constantly monitor the "CC" Compressor Contactor Signal (only energized when compressor is operating).
- C. Upon acknowledgement of "CC" signal, and following two minutes, the control board will energize the pump relay.
- D. After 1½ minutes, based upon temperature difference between Outlet & Inlet sensors, and the presence of "CC" signal, the following will take place:

- If temperature difference is greater than 3°F, the control will continue to energize the pump relay.
- If temperature difference is less than 3°F, then the control will de-energize the pump relay.
- The control will next wait 10 minutes before repeating first bullet point.
- E. The Over Temperature Limit Switch is placed in series with line voltage. Therefore, continuity between "L" of line voltage and "L" of pump output is forced broken when the Over Temperature Limit Switch opens (see wiring diagram).
- F. The 3-amp fuse is put in series with the "R" connection to the board. Whenever the fuse is blown, the control board will lose power and consequently, the relay will disengage.

FIGURE 13 INLET & OUTLET THERMISTOR TEMPERATURE CURVES TEMPERATURE F VS. RESISTANCE R OF TEMPERATURE SENSOR

F	R	F	R	F	R
51	19374	76	10247	101	5697
52	18867	77	10000	102	5570
53	18375	78	9760	103	5446
54	17989	79	9526	104	5326
55	17434	80	9299	105	5208
56	16984	81	9077	106	5094
57	16547	82	8862	107	4982
58	16122	83	8653	108	4873
59	15710	84	8449	109	4767
60	15310	85	8250	110	4663
61	14921	86	8057	111	4562
62	14544	87	7869	112	4464
63	14177	88	7686	113	4367
64	13820	89	7507	114	4274
65	13474	90	7334	115	4182
66	13137	91	7165	116	4093
67	12810	92	7000	117	4006
68	12492	93	6840	118	3921
69	12183	94	6683	119	3838
70	11883	95	6531	120	3757
71	11591	96	6383	121	3678
72	11307	97	6239	122	3601
73	11031	98	6098	123	3526
74	10762	99	5961	124	3452
75	10501	100	5827		

PART LOAD COOLING

When the thermostat system switch is placed in "COOL", it completes a circuit from "R" to "O", energizing the reversing valve solenoid. On a call for cooling, the thermostat completes a circuit from "R" to "Y1" sending the signal to the Geothermal Logic Control. The Geothermal Logic Control verifies that the High Pressure Switch, the Low Pressure Switch, and the Flow Switch control are all in the closed position. It then energizes the "A" terminal output to start the flow center (Ground Loop Applications) or energizes the water solenoid (Ground Water/Water Loop Applications). Following 10 seconds of the "A" terminal energization, the compressor contactor is energized.

FULL LOAD COOLING

The unit should already be operating in Part Load Cooling operation prior to Full Load Cooling being energized (see above). Additionally, what occurs, the thermostat completes a circuit from "R" to "Y2". This sends a signal to the compressor staging solenoid (plug on side of compressor).

PART LOAD HEATING

When thermostat is placed in "HEAT", the reversing valve solenoid is no longer energized. On a call for heating, the thermostat completes a circuit from "R" to "Y1" sending the signal to the Geothermal Logic Control. The Geothermal Logic Control verifies that the High Pressure Switch, the Low Pressure Switch, and the Flow Switch control are all in the closed position. It then energizes the "A" terminal output to start the flow center (Ground Loop Applications) or energizes the water solenoid (Ground Water/Water Loop Applications). Following 10 seconds of the "A" terminal energization, the compressor contactor is energized.

FULL LOAD HEATING

The unit should already be operating in Part Load Heating operation prior to Full Load Cooling being energized (see previous). Additionally, what occurs, the thermostat completes a circuit from "R" to "Y2". This sends a signal to the compressor staging solenoid (plug on side of compressor).

GEOTHERMAL LOGIC CONTROL – If the controller operates in normal mode, the Green Status Light blinks. This indicates that 24 volt power is applied to the board and the controller is running in normal operation.


On initial power up and call for compressor operation, a 5-minute delay + a random start delay of 0 to 60 seconds is applied. After the random delay, the compressor relay is energized (Terminal "CC"). When the "Y" input opens the compressor de-energizes.

NOTE: The time delay + random start can be disabled by removing the Test jumper on the Geothermal Logic Control Board. However, this is NOT recommended. This is only intended to be a function for factory run-in processes.

Water Solenoid – When "Y" signal is sent to Geothermal Logic Control, the water solenoid output "A" terminal will energize 10 seconds prior to "CC" output that starts compressor.

NOTE: The 10-second time delay between the energization of the "A" terminal and the "CC" terminal can be disabled by removing the WSD jumper on the Geothermal Logic Control Board.

Anti-Short Cycle Timer – After compressor shut-down, or power disruption, a 5-minute timer is applied and prevents the compressor from operating.

HIGH PRESSURE SWITCH

(Terminals HP1 & HP2) Circuit will be proved as "closed" prior to energizing "A" or "CC" terminals. If pressure switch opens, compressor will go into soft lockout mode and compressor operation will be terminated; green fault light illuminated. Logic control will then go through 5-minute delay on break + random start sequence. If no fault found on next run cycle, compressor will continue operation. If fault reoccurs, hard lockout occurs, and fault singal is sent to "L" terminal.

LOW PRESSURE SWITCH

(Terminals LP1 & LP2) Circuit will be proved as "closed" prior to energizing "A" or "CC" terminals. The condition of the LP terminals will then be ignored for the first 90 seconds after a demand for compressor operation. Following this 90 second period, if pressure switch opens, compressor will go into soft lockout mode and compressor operation will be termininated; orange fault light illuminated. The control board will then go through a 5-minute delay on break + random start sequence. If no fault found on next run cycle, compressor will continue operation. If fault recoccurs, hard lockout occurs, and the fault signal is sent to the "L" terminal.

FLOW SWITCH

(Terminals FS1 & FS2) Circuit will be proved as "closed" prior to energizing "A" or "CC" terminals. If either flow switch opens, compressor will go into soft lockout mode and compressor operation will be terminated; red fault light illuminated. Logic control will then go through 5-minute delay on break + random start sequence. If no fault found on next run cycle, compressor will continue operation. If fault reoccurs, hard lockout occurs, and fault signal is sent to "L" terminal.

OVER & UNDER VOLTAGE PROTECTION

When an an under or over voltage condition exists, the controller locks out the unit. When condition clears, the controller automatically releases the unit to normal operation and the compressor restarts after the random start and anti-short cycle timings are met. The under & over voltage protection starts at plus or minus 20% from nominal voltage and returns to operation at plus or minus 10% from nominal voltage. All four (4) LED fault lights will flash when an under or over voltage condition occurs.

NOTE: The over voltage protection can be disabled by removing the O/V jumper on the Geothermal Logic Control Board.

INTELLIGENT RESET

The Geothermal Logic Control has an intelligent reset feature after a safety control is activated. The controller locks out the unit for 5 minutes, at the end of this period, the controller checks to verify that all faults have been cleared. If faults have been cleared, the controller restarts the unit. If a second fault occurs, the controller will lockout the unit until the control is reset by breaking "Y" signal from thermostat. The last fault will be kept in memory after a full lockout; this is only cleared by cycling the unit power.

ALARM OUTPUT

The "L" terminal has 24 volts applied when a hard lockout occurs. This can be used to drive a fault light or a low voltage relay.

PRESSURE SERVICE PORTS

High and low pressure service ports are installed on all units so the system operating pressures can be observed. Pressure tables can be found later in this manual, and also applied to the backside of the service door of the unit. It is imperative to match the correct pressure table to the unit by model number, and to the correct conditions (temperature & flow rate). Also note that all pressure tables are without the desuperheater operational.

This unit employs high-flow Coremax valves instead of the typical Shrader type valves.

WARNING! Do NOT use a Schrader valve core removal tool with these valves. Use of such a tool could result in eye injuries or refrigerant burns!

To change a Coremax valve without first removing the refrigerant, a special tool is required which can be obtained at <u>www.fastestinc.com/en/SCCA07H</u>. See the replacement parts manual for replacement core part numbers.

CHECKING REFRIGERANT CHARGE QUANTITY

The correct R-410A charge is shown on the unit rating plate. Reference Figure 18 - 22 to validate proper system operation. However, it is recommended that if incorrect charge is suspected, the system refrigerant charge be reclaimed, evacuated, and charge to nameplate charge quantity and type

The nameplate charge quantity is optimized for thermal performance and efficiency throughout all modes of operation. The models covered by this manual require R-410A refrigerant, and Polyol Ester refrigerant oil.

GENERAL

- 1. Use separate service equipment to avoid cross contamination of oil and refrigerants.
- 2. Use recovery equipment rated for R-410A refrigerant.
- 3. Use manifold gauges rated for R-410A (800 psi high-side/250psi low-side).
- 4. R-410A is a binary blend of HFC-32 and HFC-125.
- R-410A is nearly azeotropic similar to R-22 and R-12. Although nearly azeotropic, charge with liquid refrigerant.
- R-410A operates at 40-70% higher pressure than R-22, and systems designed for R-22 cannot withstand this higher pressure.
- 7. R-410A has an ozone depletion potential of zero, but must be reclaimed due to its global warming potential.
- 8. R-410A compressors use Polyol Ester Oil.
- 9. Polyol Ester is hydroscopic; it will rapidly absorb moisture, and strongly hold this moisture in the oil.
- 10. A liquid line dryer must be used even a deep vacuum will not separate moisture from the oil.
- 11. Limit atmospheric exposure to 15 minutes.
- 12. If compressor removal is necessary, always plug compressor immediately after removal. Purge with small amount of nitrogen when inserting plugs.

R-410A

REFRIGERANT CHARGE

This unit was charged at the factory with the quantity of refrigerant listed on the serial plate. AHRI capacity and efficiency ratings were determined by testing with this refrigerant charge quantity.

The following pressure tables show nominal pressures for the units. Since many installation specific situations can affect the pressure readings, this information should only be used by certified technicians as a guide for evaluating proper system performance. They shall not be used to adjust charge. If charge is in doubt, reclaim, evacuate and recharge the unit to the serial plate charge.

TOPPING OFF SYSTEM CHARGE

If a leak has occurred in the system, reclaiming, evacuating (see previous criteria), and charging to the nameplate charge is recommended.

Topping off the system charge can be done without problems. With R-410A, there are no significant changes in the refrigerant composition during multiple leaks and recharges. R-410A refrigerant is similar to an azeotropic blend (it behaves like a pure compound or single component refrigerant). The remaining refrigerant charge, in the system, may be used after leaks have occurred and then "top-off" the charge by utilizing the charging charts on the service door of the unit or this manual as a guideline.

REMEMBER: When adding R-410A refrigerant, it must come out of the charging cylinder/tank as a liquid to avoid any fractionation, and to ensure optimal system performance. Refer to instructions for the cylinder that is being utilized for proper method of liquid extraction.

SAFETY PRACTICES

- 1. Never mix R-410A with other refrigerants.
- 2. Use gloves and safety glasses, Polyol Ester oils can be irritating to the skin, and liquid refrigerant will freeze the skin.
- 3. Never use air and R-410A to leak check; the mixture may become flammable.
- 4. Do not inhale R-410A the vapor attacks the nervous system, creating dizziness, loss of coordination and slurred speech. Cardiac irregularities, unconsciousness and ultimate death can result from breathing this concentration.
- 5. Do not burn R-410A. This decomposition produces hazardous vapors. Evacuate the area if exposed.
- 6. Use only cylinders rated DOT4BA/4BW 400.
- 7. Never fill cylinders over 80% of total capacity.
- 8. Store cylinders in a cool area, out of direct sunlight.
- 9. Never heat cylinders above 125°F.
- 10. Never trap liquid R-410A in manifold sets, gauge lines, or cylinders. R-410A expands significantly at warmer temperatures. Once a cylinder or line is full of liquid, any further rise in temperature will cause it to rupture or burst.

COMPONENT LOCATION

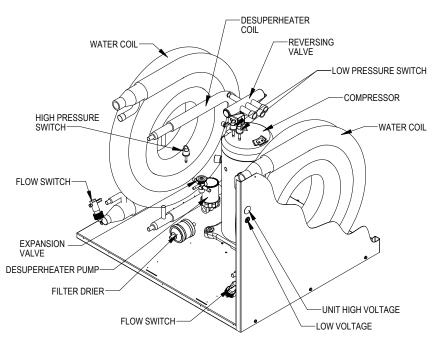
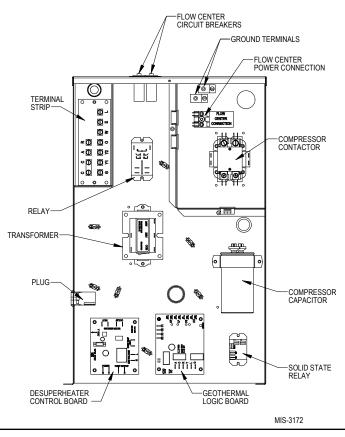



FIGURE 14 SYSTEM COMPONENT LOCATIONS

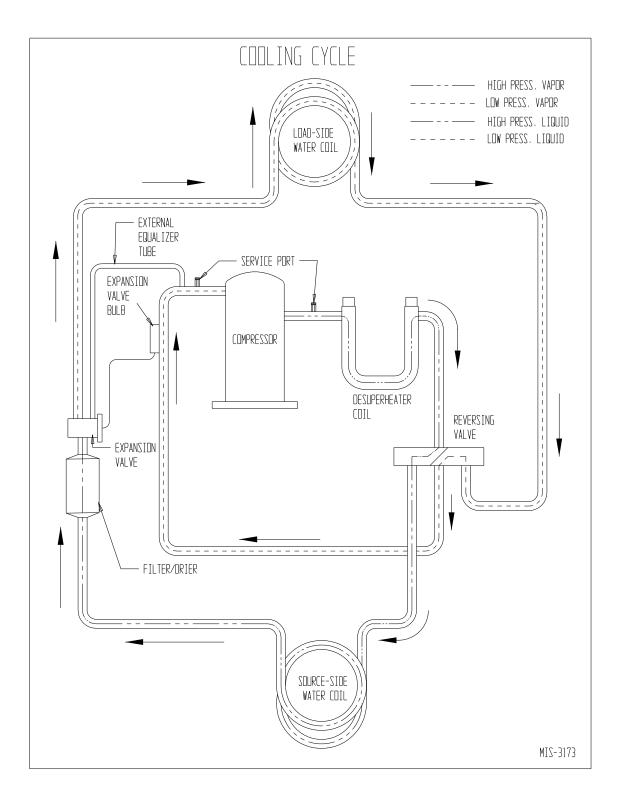

MIS-3171

FIGURE 15 ELECTRICAL CONTROL LOCATIONS

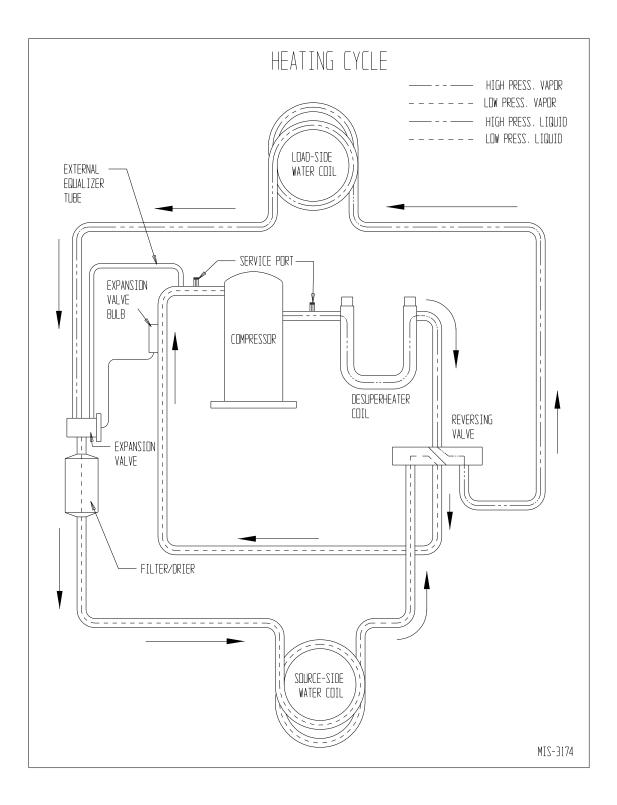

REFRIGERATION SYSTEM DIAGRAMS

FIGURE 16 COOLING CYCLE DIAGRAM

REFRIGERATION SYSTEM DIAGRAMS

FIGURE 17 HEATING CYCLE DIAGRAM

FULL LOAD COOLING

FIGURE 18A — GW024 PRESSURE TABLES

PART LOAD COOLING

SOURCE		LOAD		SYSTEMS REFRIGERANT PRESSURES	
SOUF EWT °F	·			SUCTION PSIG	Discharge PSIG
		50		117	191
	5	70		124	194
		90		162	181
	6	50 70		113 120	187 190
		90		159	177
50		50	7**	111	180
	7*	70		118	184
		90		156	171
		50		123	182
	8	70 90		116 154	178
		90 50		117	165 225
	5	70		134	231
		90		163	223
		50		115	220
	6	70		132	226
60		90	7**	160	218
	7*	50 70		113 130	214 219
	'	90		158	213
		50		145	220
	8	70		128	215
		90		157	207
	_	50		118	259
	5	70 90		145 164	267 265
		90 50		116	265
	6	70		143	261
70		90	7**	162	259
70		50	/	115	247
	7*	70		141	255
		90		160	253
	8	50 70		166 140	259 251
		90		159	249
		50		119	293
	5	70		155	304
		90		164	307
		50		117	286
	6	70 90		154	296
80		50	7**	163 117	299 281
	7*	70		153	291
		90		162	294
		50		188	297
	8	70		152	287
		90		161 120	290 337
	5	50 70		120	347
		90		175	352
		50		119	330
	6	70	7**	157	340
90		90		174	345
	7*	50		118	325
	7*	70 90		156 173	335 340
		50		193	340
	8	70		155	331
		90		173	336
		50		121	381
	5	70		161	391
		90 50		186 120	398 374
	6	50 70		120	374 384
100	Ĭ	90	-	185	391
100		50	7**	120	369
	7*	70		159	378
		90		184	386
		50		199	384
	8	70 90		159 184	374 382
110		50		122	426
	5	70		164	435
		90		197	444
		50		122	418
	6	70		163	427
	7*	90	7**	196	437
		50 70	ľ ,	121 162	413 422
		90		195	422
	8	50	1	204	427
		70		163	418
	0	10			

SOUR		LOA			ERANT PRESSURES
EWT °F	GPM	EWT °F	GPM	Suction PSIG	Discharge PSIG
	5	50		123	175
	5	70		148	181
		90		149	181
	~	50		120	172
	6	70		145	178
50		90	7**	145	179
		50		118	168
	7*	70		143	174
		90		144	175
		50		164	178
	8	70		139	172
		90		140	172
		50		124	210
	5	70		154	217
	-	90		162	219
		50		121	206
	6	70		151	213
	0	90		160	215
60			7**		
		50		120	202
	7*	70		150	209
		90		158	211
		50		177	214
	8	70		147	207
		90		156	209
		50		125	244
	5	70		125	244 252
	5				
		90		176	257
	Ι.	50		123	240
	6	70		158	248
70		90	7**	174	252
70		50	1	122	236
	7*	70		156	244
	l '	90		173	248
		50		190	249
	8	70		156	243
	0				
		90		172	246
		50		125	279
	5	70		165	288
		90		189	294
	6	50	7**	125	274
		70		164	282
		90		189	289
80		50		124	270
	7*	70		163	278
	'	90			
				188	285
		50		203	284
	8	70		164	276
		90		189	283
		50	7**	127	323
	5	70 90 50		167	331
				198	338
				126	318
	6	70		167	326
		90		197	333
90		50			
				125	314
	7*	70		166	322
	8	90		196	329
		50		207	328
		70		166	320
		90		197	327
	5	50		128	366
		70		170	375
		90		206	382
		50		127	361
	6 7*	70		169	370
		90		205	377
100		50	7**		
				126	357
		70		168	366
		90		204	374
		50		211	372
					000
	8	70		169	363
	8			169 205	363 371
	8	70 90		205	371
		70 90 50		205 129	371 409
	8	70 90 50 70		205 129 172	371 409 418
		70 90 50 70 90		205 129 172 214	371 409 418 426
	5	70 90 50 70 90 50		205 129 172 214 128	371 409 418 426 405
		70 90 50 70 90 50 70		205 129 172 214 128 172	371 409 418 426 405 414
110	5	70 90 50 70 90 50 70 90	7**	205 129 172 214 128 172 214	371 409 418 426 405 414 422
110	5	70 90 50 70 90 50 70 90 50	7**	205 129 172 214 128 172 214 127	371 409 418 426 405 414 422 401
110	5	70 90 50 70 90 50 70 90 50 70	7**	205 129 172 214 128 172 214 127 127 171	371 409 418 426 405 414 422 401 410
110	5	70 90 50 70 90 50 70 90 50	7**	205 129 172 214 128 172 214 127	371 409 418 426 405 414 422 401
110	5	70 90 50 70 90 50 70 90 50 70	7**	205 129 172 214 128 172 214 127 127 171	371 409 418 426 405 414 422 401 410
110	5	70 90 50 70 90 50 70 90 50 70 90	7**	205 129 172 214 128 172 214 127 171 213	371 409 418 426 405 414 422 401 410 418

FIGURE 18B — GW024 PRESSURE TABLES

FULL LOAD HEATING

PART LOAD HEATING

	·	LOA EWT °E			ERANT PRESSURES
WI 1	GPM	EWT °F 60	GPW	Suction PSIG 62	Discharge PSIG 198
	5	90		64	305
	J	120		67	450
		60		63	199
	6	90		65	305
00		120	7**	67	450
20		60	7**	64	198
	7*	90		66	305
		120		68	450
		60		68	412
	8	90		66	306
		120		69	450
	_	60	. 7**	78	203
	5	90		81	310
		120		84	455 203
30	6	60 90		80 82	203
	0	120		85	455
		60		81	203
	7*	90		83	311
		120		86	455
		60		87	419
	8	90		84	311
		120		87	455
		60		94	207
	5	90		98	315
		120		101	459
		60		96	208
	6	90		99	316
40		120	7**	103	460
		60	'	98	208
	7*	90		101	317
		120		105	461
		60		105	425
	8	90 120		102	317
		60		106 110	461 211
	5	90	7**	110	321
	5	120		114	464
	6	60		113	212
		90		117	321
		120		121	465
50		60		115	213
	7* 8	90		118	322
		120		123	466
		60		124	432
		90		120	323
		120		124	466
		60		121	214
	5	90		134	326
		120		141	470
		60		124	215
	6	90		137	327
60		120	7**	144	470
	7*	60		125 138	216
	'	90 120		138	328 471
		60		145	471
	8	90		140	328
	0	120		140	472
		60		131	216
	5	90		154	332
		120		163	475
	6	60	1	134	217
		90		157	333
70		120	7**	166	476
10		60	'	136	218
	7*	90		159	334
		120		167	477
	_	60		182	450
	8	90		160	334
		120		169	477
80	5	60	-	142	219
		90		174	338
	6 7* 8	120		185	480
		60		145	220
		90 120		177	339
		120	7**	188	481 221
		60 90	·	146 179	221 340
		90 120		190	482
		60		212	459
		90		179	340

SOUR	CE	LOA	D	SYSTEMS REFRIG	ERANT PRESSURES
EWT °F	GPM	EWT °F	GPM	Suction PSIG	Discharge PSIG
	5	60 90		66 68	190 296
	5	120		70	435
		60		66	190
	6	90	7**	69	296
20		120		71	436
	7*	60 90		67 70	190 296
	ľ '	120		72	436
		60		72	402
	8	90		69	296
		120		72	436 194
	5	60 90		83 86	300
	-	120		89	441
		60		84	194
	6	90 120		87 90	301 441
30		60	7**	85	194
	7*	90		88	301
		120		91	441
		60		91	407
	8	90 120		88 91	301 441
		60		101	198
	5	90		104	305
		120		107	446
		60		102	198
	6	90 120		105 109	305 447
40		60	7**	109	198
	7*	90		106	306
		120		110	447
		60		110	413
	8	90 120		107 111	305 447
		60		118	202
	5	90		122	310
		120	7**	126	452
	6 7* 8	60		120	202
		90 120		123 128	310 452
50		60		120	203
		90		125	310
		120		129	453
		60 90		129 126	418 310
		120		130	453
		60		131	205
	5	90		143	314
		120	-	149	456
	6	60 90	- 7**	134 146	206 315
		120		151	457
60		60		135	206
	7*	90		147	315
		120		153	457
	8	60 90		161 149	424 315
	ľ	120		154	457
		60		145	209
	5	90		165	319
		120 60		172 148	461 209
	6	90		140	320
70		120	7**	174	461
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		60	l '	150	210
	7*	90 120		170 177	320 462
		60		177	462
	8	90		172	321
		120		178	462
	-	60	7**	158	212
	5 6	90 120		187 194	324 465
		60		161	213
		90		190	325
80		120		198	466
	7*	60		164	214
		90 120		193 200	326 467
			1	224	438
	8	60 90 120		224 195	438 326 467

FIGURE 19A — GW036 PRESSURE TABLES

PART LOAD COOLING

	RCE	LOA		SYSTEMS REFRIG	ERANT PRESSURES
EWT °F	GPM	EWT °F	GPM	Suction PSIG	Discharge PSIG
		50		93	192
	6	70 90		97 101	191 192
		50		91	192
	7	50 70		91	186
	· '	90		99	187
50		50	9**	89	177
	9*	70		92	177
	Ŭ	90		96	177
	-	50		93	177
	11	70		90	177
		90		94	178
		50		101	230
	6	70		106	231
		90		111	231
		50		99	224
	7	70		104	225
60	-	90	9**	108	226
		50	-	96	214
	9*	70		101	215
		90		105	216
	44	50		104	215
	11	70 90		99 104	214
					215 267
	e	50 70		108 115	
	6	90		115	270 271
	<u> </u>	50		120	261
	7	50 70		106	261
	'	90		113	265
70	<u> </u>	50	9**	102	205
	9*	70		102	254
	Ĭ	90		114	255
		50		115	254
	11	70		108	251
		90		113	252
		50		115	305
	6	70	9**	123	309
80		90		129	310
		50		114	298
	7	70		122	303
		90		128	304
		50		109	288
	9*	70		117	293
	_	90		123	294
		50		126	292
	11	70		117	288
		90		123	289
	_	50		116	349
	6	70		130	355
	<u> </u>	90		137	357
	-	50		115	342
	7	70		128 136	348 350
90		90 50	9**	136	350
	9*			111 125	332 338
	9	70 90		125 132	338 340
		90 50		132	338
	11	70		125	332
		90		132	334
		50		117	393
	6	70		137	400
		90		145	403
		50		116	386
	7	70		135	393
100	L	90	0**	143	396
100		50	9**	113	375
	9*	70		132	383
		90		141	385
		50		151	384
	11	70		132	377
	ļ	90		140	380
		50		118	437
	6	70		143	446
		90		153	449
	-	50		116	429
	7	70		142	438
110		90	9**	151	441
-	C *	50		115	419
	9*	70 90		140	428
				149	431
		50	1		
	11			164 139	430 422

SOUR	CE	LOA	П	SVSTEMS DEEDIC	ERANT PRESSURE
EWT °F				Suction PSIG	Discharge PSIG
	0. 11	50	0	119	182
	6	70		120	181
		90		123	182
		50		116	184
	7	70		117	183
50		90	9**	120	183
		50	5	113	175
	9*	70		114	174
		90		118	174
		50		115	169
	11	70		114	170
		90		117 120	170 218
	6	50 70		132	218
	0	90		132	220
		50		118	217
	7	70		129	219
		90		134	220
60		50	9**	115	208
	9*	70		126	211
		90		132	212
		50		136	209
	11	70		124	206
		90		130	207
		50		121	253
	6	70		143	259
		90		150	261
		50		120	250
	7	70		141	255
70		90	9**	148	257
		50		117	242
	9*	70		138	247
		90	4	146	249
		50		156	248
	11	70		135	243
		90		142	245
	~	50		123	288
	6	70		154	297
		90		163	300
	7	50 70		121 153	283 292
	'	90		162	292
80		50	9**	119	275
	9*	70)))	150	284
	Ŭ	90		160	287
		50		177	288
	11	70		145	279
		90		155	282
		50		124	332
	6	70		158	341
		90		173	345
		50		122	326
	7	70		157	335
90		90	9**	172	339
		50		120	318
	9*	70		155	327
		90		170	332
	14	50		185	332
	11	70 90		151 166	323 327
		90 50		125	327
	6	50 70		125	375 384
	0	90		182	390
		50		124	369
	7	50 70		160	378
	l '	90		181	384
100		50	9**	122	362
	9*	70		159	371
		90		180	376
		50		193	375
	11	70		156	366
		90		177	372
		50		126	418
	6	70		165	427
		90		192	434
		50		125	412
	7	70		164	421
110	L	90	9**	191	428
1 10	9*	50		123	405
				163	414
	9*	70			
	9*	90		190	421
		90 50		190 201	421 419
	9* 11	90		190	421

Manual 2100-583G Page 37 of 48

FIGURE 19B — GW036 PRESSURE TABLES

FULL LOAD HEATING

PART LOAD HEATING

SOURCE		LOA	D	SYSTEMS REFRIGERANT PRESSURES			
		EWT °F		Suction PSIG	Discharge PSIG		
	1	60		59	203		
	6	90		60	311		
		120		63	455		
		60		59	204		
	7	90		60	312		
20		120	9**	64	456		
20		60	9	60	204		
	9*	90		62	312		
		120		65	456		
		60		64	420		
	11	90		63	312		
		120		66	456		
		60		72	208		
	6	90		75	317		
	Ŭ	120		79	460		
		60		73	209		
	7	90		76	317		
	· '	120		80	461		
30			9**	75	210		
	0.*	60					
	9*	90		78	318		
		120		82	462		
		60		83	427		
	11	90		80	318		
	ļ	120		84	462		
		60		86	213		
	6	90		91	322		
		120		95	466		
		60		87	214		
	7	90		92	322		
40		120	0++	97	466		
40		60	9**	90	215		
	9*	90		95	323		
	_ ا	120		99	467		
		60		101	433		
	11	90		96	324		
		120		101	468		
		60		99	218		
6	90		106	328			
	120		111	471			
	_	60		101	218		
	7	90		108	328		
50		120	9**	113	471		
		60	Ũ	105	220		
	9*	90		111	329		
		120		117	472		
		60		120	439		
	11	90		113	330		
		120		119	474		
		60		103	222		
	6	90		117	334		
		120		125	477		
		60		105	222		
	7	90		119	334		
		120	0**	128	478		
60		60	9**	108	223		
	9*	90		121	335		
	٦	120		130	479		
		60		137	448		
	11	90		123	336		
	''	120		132	480		
		60		107	225		
	6	90		128	340		
		120		120	484		
	-	60		109	226		
	7	90		130	341		
70		120	9**	142	485		
-		60		111	226		
	9*	90		132	341		
		120		143	485		
		60		153	457		
	11	90		133	342		
		120		145	486		
		60		111	228		
	6	90		139	346		
		120		154	490		
		60		114	229		
	7	90		141	347		
	'	120		156	491		
80		60	9**	114	230		
	9*	90		142	348		
	9	90 120		142	348 492		
				157			
				170	466		
	14	60					
	11	60 90 120		143 157	348 492		

SOUR		LOA			ERANT PRESSURES
EWT °F	GPM	EWT °F	GPM	Suction PSIG	Discharge PSIG
		60		63	193
	6	90		66	300
		120		69	442
		60		64	193
	7	90		66	300
		120		69	442
20			9**		193
	0.*	60		65	
	9*	90		67	300
		120		70	443
		60		70	407
	11	90		67	300
		120		71	443
		60		79	198
	6	90		82	305
	-	120		86	447
		60		80	198
	7	90		83	305
	l '	120		87	448
30			9**		
		60		82	199
	9*	90		85	306
		120		88	448
		60		88	413
	11	90		86	306
		120		89	448
	1	60		95	203
	6	90		99	310
		120			452
				103	
	_	60		97	203
	7	90		100	310
40		120	9**	105	453
40		60	9	99	204
	9*	90		102	311
		120		107	453
		60		107	418
	11	90		107	311
		120		104	454
		60		112	208
	6	90		116	315
		120		120	457
		60		113	208
	7	90		117	315
		120	6 -1-1	122	458
50		60	9**	116	209
	9*	90		120	316
		120	_	120	458
		60		126	424
	11	90	122	317	
		120	<u> </u>	127	459
		60		120	209
	6	90		133	320
		120	0	140	463
		60		121	210
	7	90		135	321
-		120		142	463
60		60	9**	124	211
	0*				
	9*	90		137	322
		120		144	464
		60		153	433
	11	90		139	322
		120		146	465
		60		128	211
	6	90		151	326
		120		160	469
		60		129	211
	7	90		152	326
	'				
70		120	9**	162	469
	~	60		131	213
	9*	90		154	327
		120		164	470
		60		179	443
	11	90		156	328
		120		165	471
	1	60		136	213
	6	90		168	331
		120		180	474
	-	60		137	213
	7	90		170	331
80		120	0**	181	475
80		60	9**	139	214
	9*	90		172	333
	- T	120		183	476
		60		206	470
				200	452
	11			170	224
	11	90 120		173 184	334 477

FIGURE 20A — GW048 PRESSURE TABLES

PART LOAD COOLING

SOUR	CE	LOA	D	SYSTEMS REFRIG	ERANT PRESSURES
EWT °F		EWT °F		Suction PSIG	Discharge PSIG
		50		107	207
	7	70		104	208
		90		108	210
	9	50 70		103 100	196 198
	9	90		100	200
50		50	11**	101	190
	11*	70		98	191
		90		102	193
		50		93	189
	13	70		97	187
		90 50		101 109	189 244
	7	70		115	244 249
	ľ '	90		120	251
		50	1	105	232
	9	70		111	237
60		90	11**	116	240
		50		103	225
	11*	70		109	230 232
		90 50	-	<u>114</u> 114	232
	13	70		107	230
		90		113	228
	Ì	50		111	281
	7	70		126	290
		90		132	293
	_	50		107	268
	9	70		122	277
70		90	11**	128 104	280
	11*	50 70		104	260 269
	''	90	_	125	272
		50		134	272
	13	70		118	264
		90		124	267
		50		112	319
9	7	70	0 0 0 0 0 0 0 0 0 0 0 0	137	330
		90		144	334
	0	50 70		109 133	304 316
	3	90		140	320
80		50		106	296
	11*	70		131	307
		90		137	311
		50		154	314
	13	70		129	302
		90		136	306
	7	50 70		112 142	363 376
	l '	90		153	381
		50		109	349
	9	70		139	361
90		90	11**	150	367
30		50		108	340
	11*	70		137	352
		90	{	148	358
	13	50 70		165 136	359 347
		90		147	353
		50		112	408
	7	70		146	421
		90		161	429
		50		110	394
	9	70		145	406
100		90	11**	160	415
	11*	50 70		109 143	385 397
		90		143	405
		50	1	177	403
	13	70		143	392
		90		158	400
		50		112	453
	7	70		151	466
		90	-	170	476
		50		111	439
	9	70 90		150 170	452 462
110		90 50	11**	111	462 429
	11*	70		150	442
		90		169	453
		50	1	189	449
		00			
	13	70 90		150 169	437 447

SOUR	CE	LOA	П	SVSTEMS DEEDIC	ERANT PRESSURE
EWT °F		EWT °F		Suction PSIG	Discharge PSIG
		50		120	195
	7	70		128	195
		90		132	194
		50		114	187
	9	70		122	187
50		90	11**	125	186
		50		111	183
	11*	70 90		119	183
		50		122 125	182 183
	13	50 70		125	183
	13	90		120	183
		50		120	229
	7	70		138	233
		90		144	234
		50		115	220
	9	70		133	224
		90		139	226
60		50	11**	113	215
	11*	70		131	219
		90		137	221
		50		148	222
	13	70		129	218
		90		135	220
		50		119	263
	7	70		147	271
		90		155	275
		50		116	253
	9	70		144	261
70	ľ	90	44++	152	265
70		50	11**	115	248
	11*	70		143	256
		90		151	259
		50		171	261
	13	70		142	253
		90		150	257
		50		118	297
	7	70		156	309
		90		167	315
		50		117	287
	9	70		156	298
00		90	44**	166	305
80		50	11**	116	280
	11*	70		155	292
		90	50 70	166	298
		50		194	300
	13	70		155	288
		90		165	294
		50		119	341
	7	70		159	353
		90		179	361
		50		119	330
	9	70		158	342
90		90	11**	179	350
		50		118	324
	11*	70		158	336
		90		178	344
	10	50		198	344
	13	70		158	332
		90	<u> </u>	178	340
	-	50		121	385
	7	70		162	397
		90		192	407
	0	50 70		120 161	374
	9	70 90			386
100			11**	191 120	396
	11*	50 70		120	368 380
		90		191	390
		50		202	390
	13	50 70		161	375
	13	90		191	385
		90 50		122	428
	7	50 70		122	420
	l '	90		205	440
		50		122	417
		50 70		122	417
	a	1 10		204	430
	9	90			774
110	9	90 50	11**		41 2
110		50	11**	122	412 424
110	9	50 70	11**	122 164	424
110		50 70 90	11**	122 164 204	424 436
110		50 70	11**	122 164	424

FIGURE 20B — GW048 PRESSURE TABLES

FULL LOAD HEATING

PART LOAD HEATING

SOUR	·	LOA			ERANT PRESSURES
WT°F	GPM	EWT °F	GPM	Suction PSIG	Discharge PSIG
	-	60		58	209
7	1	90		59	326
		120		64	479
	_	60		62 62	211
	9	90		62	327
20		120	11**	68	481
	44*	60		58	209
	11*	90		59	326
		120		64	479
		60		57	452
	13	90		57	336
		120		63	490
	-	60		72	216
	7	90		74	331
		120		79	483
		60		76	217
	9	90		77	333
30		120	11**	83	484
		60		74	216
	11*	90		76	332
		120		81	483
	10	60		80	448
	13	90		78	332
		120	<u> </u>	84	484
	-	60		86	222
	7	90		89	336
	<u> </u>	120		94	486
	_	60		89	223
	9	90		92	338
40		120	11**	98	488
-		60		90	223
	11*	90		93	337
		120		98	487
		60		102	443
	13	90		100	329
		120		105	479
	_	60		99	228
	7	90		104	342
		120		109	490
	_	60		103	229
	9	90		107	343
50		120	11**	112	491
		60		106	230
	11*	90		110	343
		120		115	491
	10	60		125	439
	13	90		121	325
		120		126	473
	7	60		108	233
	7	90 120		122 131	349 496
	0	60		112 126	234
	9	90 120		-	350
60			11**	135	498
	44+	60		114	235
	11*	90		128	351
		120		138	498
	40	60		149	455
	13	90		136	339
		120	<u> </u>	145	487
	-	60		117	237
	7	90		140	355
		120		154	502
	_	60		121	239
	9	90		144	358
70		120	11**	158	504
		60		123	240
	11*	90		146	359
		120		160	505
	l	60		173	472
	13	90		150	354
	ļ	120		164	500
	_	60		126	242
	7	90		159	362
	L	120		177	508
		60		130	244
	9	90		162	365
80		120	11**	180	511
00		60	11	131	246
	11*	90		164	366
		120		182	512
		60		198	489
	13	90		165	368

SOUR	CE	LOA	П	SVSTEMS DEEDIG	ERANT PRESSURES
EWT °F		EWT °F		Suction PSIG	Discharge PSIG
		60		63	201
	7	90		66	309
		120		70	451 201
	9	60 90		64 66	309
20	Ũ	120		71	451
20		60	11**	64	202
	11*	90		67	310
		120		71	452
	13	60 90		70 67	419 310
	10	120		72	452
		60		78	205
	7	90		82	314
		120 60		87 80	457 206
	9	90		83	315
30		120	11**	88	457
30		60		81	206
	11*	90		84	315
		120 60		89 89	458 424
	13	90		85	315
		120		90	458
		60		94	210
	7	90		98	319
		120 60		103 96	463 210
	9	60 90		96 100	210 320
40	Ŭ	120	14++	105	464
40		60	11**	98	210
	11*	90		102	320
		120 60		107 107	464 430
	13	90		107	320
		120		108	464
		60		110	214
	7	90	-	114	325
		120		120	470
	9	60 90	11**	113 117	215 325
50	Ŭ	120		123	470
50		60		115	215
	11*	90		119	325
		120 60		125 125	470 435
	13	90		125	435 325
		120		126	470
		60		120	219
	7	90		134	330
		120 60		141 125	474 220
	9	90		125	331
60	Ĩ	120	11++	146	475
60		60	11**	128	220
	11*	90		142	332
		120 60		149 157	476
	13	90		143	332
		120		150	476
		60		131	223
	7	90		155	336
		120 60		163 137	479 224
	9	90		160	337
70		120	11**	169	480
70		60	11	141	225
	11*	90 120		164	339
		120 60		172 189	481 452
	13	90		166	339
		120		175	481
	_	60		142	227
	7	90 120		175 185	342
		120 60		185 149	484
	9	90		149	344
80		120	11**	192	485
00		60	11	153	231
	11*	90		186	345
		120 60		196 221	487 460
	13		1	<u> </u>	400
	13	90		189	345

FIGURE 21A — GW060 PRESSURE TABLES

PART LOAD COOLING

SOUR	CE	LOA	D	SYSTEMS REFRIG	ERANT PRESSURES
EWT °F	GPM	EWT °F	GPM	Suction PSIG	Discharge PSIG
		50		105	208
	9	70 90		109 114	213
					217
	11	50 70		100 104	196 200
		90		104	200
50		50	13**	98	190
	13*	70		102	194
		90		107	199
		50		104	196
	15	70		100	191
		90		105	196
		50		107	244
	9	70		119	252
		90		125	256
		50		103	232
	11	70		115	240
60		90	13**	121	244
00		50	10	100	226
	13*	70		112	233
		90		119	237
		50		123	237
	15	70		111	229
	ļ	90		117	234
		50		108	280
	9	70 90		129 136	291 295
	11	50 70		105 125	269 279
		90		125	279 283
70		50	13**	102	263
	13*	50 70		102	202
	15	90		130	276
		50		142	278
	15	70		121	268
		90		129	272
		50		110	316
	9	70	13** 	139	329
		90		147	333
		50		107	305
	11	70		136	318
80		90		144	322
80		50		105	298
	13*	70		134	311
		90		142	315
		50		161	319
	15	70		132	306
		90		140	310
	9	50 70		110	360 373
	9	70 90		142 156	373 380
	11	50 70		108 140	350 362
		90		140	369
90		50	13**	107	342
	13*	70		139	355
		90		152	361
		50		170	362
	15	70		137	349
		90		151	356
		50		111	404
	9	70		146	417
		90		164	426
		50		109	394
	11	70		145	406
100		90	13**	163	415
100		50		108	386
	13*	70		144	398
		90		162	407
	45	50		178	406
	15	70		143	393
		90 50		161	402
	9	50 70		111 150	448 460
	5	90		173	400
		50		111	472
	11	70		149	451
		90		172	462
110		50	13**	110	430
	13*	70		149	442
	-	90		172	453
		50		187	449
	15	70		148	437

SOUR		LOA			ERANT PRESSURE						
EWT °F	GPM	EWT °F	GPM	Suction PSIG	Discharge PSIG						
	~	50		115	192						
	9	70		137	200						
		90		137	200						
	44	50 70		111	184						
	11	70 90		133 133	193 193						
50			13**								
	13*	50 70		108 130	179 188						
	13	90		130	188						
		50		149	193						
	15	70		149	184						
	15	90		127	184						
		50		115	226						
	9	70		142	236						
	Ũ	90		149	238						
		50		112	219						
	11	70		139	229						
		90		146	231						
60		50	13**	110	214						
	13*	70		137	224						
		90		144	226						
		50		163	229						
	15	70		136	220						
	10	90		143	222						
		50		116	261						
	9	70		148	201						
		90		148	272						
		50		114	270						
	11	50 70		114	254 264						
		70 90		146	269 269						
70			13**	113							
	13*	50 70			249						
	13"	70		145 158	259						
		90			264						
	15	50 70		176 144	266						
	15	70			255						
		90		157	260						
	~	50		116	296						
	9	70		153	307						
		90		173	315						
	11	50		116	288						
		70		153	300						
80		90	13**	172	307						
		50		115	283						
	13*	70		152	295						
		90		171	302						
	45		50 70	189	303						
	15	-		152	291						
		90		171	298						
		~	0	٥	۵	0	0	50		118	340
	9	9	9	9	9	70		156	351		
		90		181	359						
		50		118	332						
	11	70		155	343						
90		90	13**	180	351						
		50		117	327						
	13*	70		155	338						
		90		179	346						
		50		193	345						
	15	70		155	334						
		90		179	342						
	_	50		120	383						
	9	70		159	394						
		90		189	403						
		50		120	375						
	11	70		158	386						
100		90	13**	188	395						
	40.5	50	-	119	370						
	13*	70		157	381						
		90		187	390						
		50		196	388						
	15	70		157	377						
		90		187	386						
	Ι.	50		123	427						
	9	70		162	437						
		90		197	448						
		50		121	419						
	11	70		161	429						
110		90	13**	196	440						
110		50	IJ	121	414						
	13*	70		160	424						
	13*			105	434						
		90		195	434						
		90 50		195	430						
	15										

FIGURE 21B — GW060 PRESSURE TABLES

FULL LOAD HEATING

PART LOAD HEATING

PM EWT °F 60	I SPM		Disal and Date
1 60		Suction PSIG	Discharge PSIG
		55	210
90		58	322
120		61	467
60 1 90		57 59	211 323
1 90		59 62	323 467
60	13**	57	211
3* 90		60	323
120		62	468
60		62	435
5 90		60	323
120		63	468
60		69	216
90		73	328
120		76	472
60		71	217
1 90		74	328
120	13**	78	473
60	-	72	217
3* 90		75	329
120		79	473 441
60 5 90		80 76	441 329
5 90		76 80	329 474
60		83	222
90		87	333
120		92	478
60		85	223
1 90		90	334
120	40**	95	478
60	13**	87	223
3* 90		91	335
120		96	479
60		97	447
5 90		93	335
120		97	480
60		97	227
90		102	339
120		108	483
60		100	228
1 90		105	340
120	13**	111	484
60		102	229
3* 90 120		107 113	341 485
60		113	485
5 90		109	341
120		115	485
60		105	232
90		119	346
120		127	489
60		107	233
1 90		121	347
120	13**	130	491
60	IJ	109	234
3* 90		123	347
120		131	491
60		138	462
5 90		124	348
120		133	492
60		113	236
90 90 120		135 146	353 496
60		146	237
1 90		115 137	354
1 90		137	354 497
60	13**	148	238
3* 90		138	354
120		150	498
60		162	472
5 90		139	355
120		151	498
60		120	240
90		151	359
120		165	502
60		122	242
1 90		153	361
120	13**	167	504
60		123	242
			361
			504
			481
			362 505
3* 5	120	120 60 90 120 60 90	120 13** 167 60 13** 123 90 154 168 120 168 168 60 185 90 90 155 155

	CE	LOA			ERANT PRESSURES
EWT °F	GPM		GPM	Suction PSIG	Discharge PSIG
		60		61	203
	9	90		63	309
		120		67	452
		60		62	203
	11	90		64	309
20		120	10**	68	452
20		60	13**	62	204
	13*	90		65	309
		120		69	453
		60		67	415
	15	90		65	309
	10	120		69	453
		60		77	207
	9	90		80	314
	J	120		84	457
		60		78	207
	11	90		81	314
		120		86	
30			13**		457
	10*	60		79	208
	13*	90		82	315
		120		87	458
		60		86	422
	15	90		83	315
		120		87	458
		60		92	211
	9	90		97	319
		120		102	462
		60	1	94	211
	11	90		94 98	320
		120		103	462
40			13**		
	10-	60		96	212
	13*	90		100	320
		120		105	462
		60		105	428
	15	90		101	320
		120		106	463
		60		108	215
	9	90		113	324
	-	120		119	466
		60	1	110	215
	11	90		115	325
		120		121	467
50			13**		
	4.04	60		112	216
	13*	90		117	325
		120		123	467
		60		124	435
	15	90		119	326
		120		125	468
		60		119	218
	9	90		133	330
		120		139	471
		60		121	219
	11	90		136	331
		120		142	472
60		60	13**	124	219
	13*	90		138	331
	13			138	473
		120	1		
	45	60		154	444
	15	90		140	332
	<u> </u>	120	<u> </u>	146	473
		60		129	221
	9	90		153	336
		120		160	477
		60		132	222
	11	90		156	337
-		120	1	163	478
70		60	13**	135	223
	13*	90		158	337
		120		165	478
	1-	60		184	453
	15	90		160	338
	L	120	<u> </u>	167	479
		60		139	224
	9	90		172	342
		120		180	482
		60		143	226
	11	90		176	343
_		120		184	483
80		60	13**	146	226
	13*				344
	13"	90		179	
		120		187	484
		60		214	461
	1 4 5	90	1	181	344
	15	120		188	484

FIGURE 22A — GW070 PRESSURE TABLES

PART LOAD COOLING

SOUF	CE	LOA	D	SYSTEMS REFRIG	ERANT PRESSURES
EWT °F	GPM	EWT °F	GPM	Suction PSIG	Discharge PSIG
		50		104	218
	11	70		122	231
		90		125	232
	10	50		101	211
	13	70		120	224
50		90	16**	123	225
	45+	50		99	205
	15*	70		118	218
		90		121	219
	17	50 70		135 117	228
	17	90		120	215 216
		90 50		120	255
	11	70		129	233
	''	90		137	273
	-	50		104	247
	13	70		127	262
		90		135	265
60		50	16**	102	241
	15*	70		125	256
		90		133	259
		50		147	266
	17	70		124	252
		90		132	255
	1	50		108	293
	11	70		136	308
		90		149	314
		50		106	284
	13	70		134	300
70		90 50 70	16**	147	306
10			16**	104	278
	15*			132	294
		90		145	300
		50		159	304
	17	70		131	289
		90		143	295
		50		110	330
	11	70		144	347
		90		161	355
	40	50		108	321
	13	70		142	337
80		90	16**	159	346
	45+	50		106	315
	15*	70		140	331
		90 50		157 171	340 343
	17	70		138	326
	11	90		155	335
		50		112	374
	11	70		144	390
		90	162	399	
				110	365
	13	70	16**	143	380
		90		160	389
90		50		108	359
	15*	70		141	374
	10	90		158	383
		50		172	385
	17			139	369
		90		157	378
		50		113	418
	11	70		145	433
		90		164	442
		50		111	409
	13	70		143	423
100		90	16**	162	432
	4.50	50		110	403
	15*	70		142	418
		90		160	426
	47	50		172	427
	17	70		140	413
		90 50		159	421
	11	50 70		115 146	463 476
		90		146	485
		50		113	453
	13	50 70		113	466
	10	90		144	400
110		50	16**	111	447
	15*	70		143	461
		90		162	469
		50		173	469
	17	50 70		173 142	469 456

SOUR	RCE LOAD			SYSTEMS REFRIGERANT PRESSURES			
EWT °F		EWT °F		Suction PSIG	Discharge PSIG		
		50		111	200		
	11	70		140	213		
		90		150	217		
		50		109	196		
	13	70		138	208		
50		90	16**	148	212		
50		50	10	107	193		
	15*	70		136	206		
		90		146	209		
		50		163	216		
	17	70		134	203		
		90		144	207		
		50		113	236		
	11	70		145	250		
		90		160	256		
		50		111	230		
	13	70		143	245		
	13	90		143			
60			16**		250		
		50		110	228		
	15*	70		141	241		
		90		156	247		
		50		171	252		
	17	70		140	238		
		90		155	244		
		50		115	272		
	14						
	11	70		149	286		
		90		169	295		
		50		114	267		
	13	70		148	281		
		90	16**	168	289		
70		50		112	262		
	15*	70		146	277		
	15	90		166	285		
	47	50		179	287		
	17	70		145	273		
		90		165	282		
		50		118	308		
	11	70		154	323		
		90		179	333		
		50	16**	116	302		
	13	70		153	317		
	15	90		178	327		
80							
		50		115	297		
	15*	70		151	312		
		90		176	322		
		50		187	323		
	17	70		150	308		
		90		175	319		
		50		119	352		
	11	70		156	366		
		90		181	376		
		50		118	346		
	10						
	13	70		155	360		
90		90	16**	180	370		
		50		116	341		
	15*	70		154	355		
		90		178	365		
		50		190	366		
	17	70		153	352		
	11	90		178	362		
		50		121	395		
	11	70		158	409		
		90		183	419		
	Ι.	50		120	389		
	13	70		157	403		
100		90	16**	182	413		
100		50	10	118	384		
	15*	70		156	398		
	-	90		180	408		
		50		194	409		
	17						
	17	70		156	395		
		90		180	405		
		50		122	439		
	11	70		161	452		
		90		184	462		
		50		121	432		
				160	446		
	13	70				184	456
	13	70 90					
110	13	90	16**	16**			
110		90 50	16**	120	427		
110	13 15*	90 50 70	16**	120 159	427 441		
110		90 50 70 90	16**	120 159 182	427 441 451		
110	15*	90 50 70 90 50	16**	120 159 182 197	427 441 451 452		
110		90 50 70 90	16**	120 159 182	427 441 451		

FIGURE 22B — GW070 PRESSURE TABLES

FULL LOAD HEATING

PART LOAD HEATING

	CE	LOA			ERANT PRESSURES
VT °F	GPM		GPM	Suction PSIG	Discharge PSIG
		60		54	218
	11	90		57	331
		120		62	478
		60		55	218
	13	90		58	332
		120		63	478
20		60	16**	56	219
	15*	90		60	333
	15				
		120		64	479
		60		64	447
	17	90		60	333
		120		64	479
		60		68	225
	11	90		72	338
		120		77	485
	-	60		70	226
	13	90		74	339
	10	120		79	486
30			16**		226
	454	60		71	
	15*	90		75	340
		120		80	486
		60		80	454
	17	90		76	340
	1	120		81	487
	1	60	i – – –	83	232
	11	90		88	345
	''	120		93	492
		-			
	4.5	60		85	233
	13	90		90	346
40	L	120	16**	95	493
-70		60		86	234
	15*	90		91	347
		120		97	494
		60		97	461
	17	90		92	348
	11	120		98	495
		60		97	239
	11	90		103	352
		120		109	499
		60		100	240
	13	90		105	353
		120	10**	111	501
50		60	16**	102	241
	15*	90		107	355
	10	120		113	502
		60		110	468
	17	90		108	355
	17				
	ļ	120		115	502
		60		105	244
	11	90		116	358
		120		122	504
		60		107	245
	13	90		118	359
		120		124	505
60		60	16**	108	246
	15*	90		119	360
	1.0	120		126	506
			1		
	4-	60		131	475
	17	90		121	361
	ļ	120		127	507
		60	60	113	249
	11	90		129	364
		120		135	509
		60	1	114	250
	13	90		130	365
	1.5	120		130	510
70			16**		
	45+	60		115	251
	15*	90		132	366
		120		138	511
		60		149	481
	17	90		133	366
	1	120		139	511
	1	60		120	254
	11	90		142	370
	''	120		142	514
			4		
		60		121	255
	13	90		143	371
80		120	16**	150	515
00		60	10	122	255
	15*	90		144	371
	1	120		151	515
		60		166	488
	17				
	1 17	90	1	145	372
		120		152	515

SOUR	CE	LOA			ERANT PRESSURES
EWT °F		EWT °F	·	Suction PSIG	Discharge PSIG
		60		61	207
	11	90		64	316
		120		68	457
		60		62	207
	13	90		65	317
20		120	16**	69	457
	454	60		62	208
	15*	90		65	317
		120 60	{	69 69	458 427
	17	90		66	317
		120		70	458
		60		76	214
	11	90		80	323
		120		85	464
		60		77	214
	13	90		81	323
30		120	16**	86	465
	454	60		78	215
	15*	90		82	323
		120	{	87	465
	17	60 90		87 83	433 324
	''	120		88	465
		60		91	221
	11	90		96	329
		120		102	471
		60	1	93	221
	13	90		98	330
40		120 60	16**	103	472
+0			10	94	222
	15*	90		99	330
		120		105	472
	47	60		105	438
	17	90 120		100	330 473
		60		105 107	228
	11	90		112	335
		120		112	479
		60	1	109	229
	13	90		114	336
50		120	4.0**	120	479
50		60	16**	110	229
	15*	90		116	336
		120		122	480
		60		122	444
	17	90 120		117	337
		60		123	480 233
	11	90		117 129	233 342
		120		135	485
		60	1	119	233
	13	90		131	343
60		120	10**	137	486
60		60	16**	121	234
	15*	90		133	343
		120		139	486
	47	60		146	453
	17	90		134	343
		120		140	486
	11	60 90		128 146	238 350
		120		146	492
		60	1	132	238
	13	90		149	349
70		120	10**	154	492
70		60	16**	131	238
	15*	90		150	349
	<u> </u>	120		156	492
		60		170	461
	17	90		152 157	350
		120 60		138	493 243
	11	90		138	243 357
		120		169	499
		60	1	140	242
	13	90		166	355
00		120	10**	171	498
80		60	16**	142	243
	15*	90		168	356
		120		173	499
	-	120 60		194	470
	17			169 174	357 499

TROUBLESHOOTING

	POWER SUPPLY - CONTROL SYSTEM	Y - CONTR	OL SYSTEN	A ISSUE						MAIP	MAIN SYSTEM ISSUES	M ISSUE	6				Ê	EXT. SYSTEM ISSUES	IISSII
	Line Voltage		Low Voltage	9	Ö	Compressor	Re	Refrigerant System	System	Rev.Valve	/e	Source V	Source Water Coil		Load V	Load Water Coil		Water System	stem
Power Failure	Blown Fuse or Tripped Breaker Faulty Wrinng Loose Terminals Defective Contacts in Contactor	Faulty Wring Time Delay + Random Start Sequence Not Timed Out Loose Terminals	Control Tranformer (has circuit breaker) Voltage (Transformer has 208 & 240V Taps & Geothermal Voltage (Transformer has 208 & 240V Taps & Geothermal Thermostat	Contactor Coil High Pressure Trip (Green Diagnostic Light) Low Pressure Trip (Orange Diagnostic Light)	Flow Switch Trip (Red Diagnostic Light) Bad Compressor Capacitor Compressor Internal Thermal Overhoad Open	Bearings Defective Seized Busted Internal Scroll	Motor Winding Defective Refrigerant Charge Low Refrigerant Overcharge	High Suction Pressure	Low Suction Pressure Non-Condensables	Fauly Expansion Valve Leaking Shirling Partiality Shirling	Defective Valve or Coil Scaled or Plugged Coil (Hig.) Scaled or Plugged Coil (Clg.)	Water Volume Low (Htg.) Water Volume High (Htg.) Water Volume Low (Clg.)	Water Volume High (Cig.) High Water Temperature (Cig.) High Water Temperature (Hig.)	Low Water Temperature (Cig.) Low Water Termperature (Htg.) Scaled or Plugged Coil (Htg.)	Scaled or Plugged Coil (Clg.) Water Volume Low (Htg.) Water Volume High (Htg.)	High Water Termoer (Cig.) High Water Temperature (Cig.) High Water Temperature (Cig.)	Low Water Temperature (Clg.) Low Water Termperature (Htg.) Solenoid Vaive Stuck Closed (Htg.)	Solenoid Valve Stuck Closed (Clg.) Solenoid Valve Stuck Open (Htg. or Clg.) Source Water Pump Faltering (Htg.)	Source Water Pump Faltering (Clg.) Load Water Pump Faltering (Htg.)
Compressor Will Not Run, No Line X Power at Contactor	× × ×																		
Compressor Will Not Run Power at Contactor	×××	~ × × ×	××××	× × ×	× × ×	× ×	×												
Compressor "Hums" But Will Not Start	× × ×				×	××	×												
Compressor Cycles on Overload	X X X				×	X X	× × ×		×	×									
Thermostat Check Light On, Unit in Lock-out Mode				× ×	×		×	×	××	×									
Compressor Off on High Pressure Control (Green Diagnostic Light Flashing)				×			×		× ×	×	×	××	×		××	×	××		× ×
Compressor Off on Low Pressure Control (Orange Diagnostic Light Flashing)				×			×		×	×	×	× ×		× ×	×		×	× ×	
Compressor Off on Flow Switch (Red Diagnostic Light Flashing)					×						××	×		×	× × ×		×	×	××
Compressor Noisey	×				×	×	×	· · ·	× : ×	×									
Head Pressure Too High Head Pressure Too Low							× ×	× ×	× ×	× × ×	×	× ×	× × ×	× ×	× × ×	× ×	×	×	× ×
Suction Pressure Too High						×	×		×		<	×	×	<		< × ×			
Suction Pressure Too Low							×			×××	×	×		×	×		× ×	× ×	
High Compressor Amps																		:	
Excessive Water Usage		×															+	×	
Compressor Runs Continuousiy - No Cooling						×	×			× × ×		×			×				
Liquid Refrigerant Flooding Back to Compressor							×			×	×	×		×	× ×		×	×	×
Compressor Runs Continuously - No Heating							×			×	×	×		×			×	×	
Reversing Valve Does Not Shift		×									×								
Liquid Refrigerant Flooding Back to Compressor							×		×	× × ×	×	×		×	×		×	×	××
Excessive Operation Costs					×	×	× × ×			××××	××	×		×	××	×	×	×	×
Ice in Water Coil							×			×	×	×			_		×	×	

SERVICE HINTS

Check all power fuses or circuit breakers to ensure that they are all the correct rating.

UNBRAZING SYSTEM COMPONENTS

If the refrigerant charge is removed from a scroll equipped unit by bleeding the high side only, it is sometimes possible for the scrolls to seal, preventing pressure equalization through the compressor. This may leave low side shell and suction line tubing pressurized. If the brazing torch is then applied to the low side while the low side shell and suction line contain pressure, the pressurized refrigerant and oil mixture could ignite when it escapes and contacts the brazing flame. To prevent this occurence, it is important to check both the high and low side system pressures with manifold gauges before unbrazing. Removal of service port cores is highly recommended as secondary insurance that all system pressure has been relieved.

COMPRESSOR SOLENOID

See Sequence of Operation on Pages 28 & 29 for function.

A nominal 24-volt direct current coil activates the internal compressor solenoid. The input control circuit voltage must be 18 to 28 volts ac. The coil power requirements is 5 VA. The external electrical connection is made with a molded plug assembly. This plug contains a full wave rectifier to supply direct current (dc volts) to the unloader coil.

COMPRESSOR SOLENOID TEST PROCEDURE

- If it is suspected that the unloader is not working, the following methods may be used to verify operation.

- 1. Operate the system and measure compressor amperage. Cycle the compressor solenoid on and off at 10-second intervals. The compressor amperage should go up or down at least 25 percent.
- 2. If Step #1 does not give the expected results, shut unit off. Apply 18 to 28 volts ac to the solenoid molded plug leads and listen for a click as the solenoid pulls in. Remove power and listen for another click as the solenoid returns to its original position.
- 3. If "clicks" cannot be heard, shut off power and remove the control circuit molded plug from the compressor and measure the solenoid coil resistance. The resistance should be 32 to 60 ohms depending on compressor temperature.
- 4. Next, check the molded plug:

Voltage Check: Apply control voltage to the plug wires (18 to 28 volts ac). The measured dc voltage at the female connectors in the plug should be around 15 to 27 volt dc.

Resistance Check: Measure the resistance from the end of the one molded plug lead to either of the two female connectors in the plug. One of the connectors should read close to zero ohms, while the other should read infinity. Repeat with other wire. The same female connector as before should read zero, while the other connector again reads infinity. Reverse polarity on the ohmmeter leads and repeat. The female connector that read infinity previously should now read close to zero ohms. Replace plug if either of these test methods does not show the desired results.

GROUND SOURCE HEAT PUMP PERFORMANCE REPORT

DATE	TAKI	EN BY:	
1. Unit Manufacturer	Model No	Serial No	
Thermostat Manufacturer	Mod	el No	
2. Company Reporting			
3. Installed by		Date Installed	
4. User's (Owner's) Name			
Address			
5. Unit location			
WATER SYSTEM INFORMATION			
6. Open Loop System (Water Well)	Closed Lo	oop System	
A. If Open Loop, where is water discha	rged ?		
7. The following questions are for Closed Lo	oop systems only!		
A. Closed Loop system designed	d by:		
B. Type of Antifreeze used		% Solution	
C. System Type: Series _		Paralled	_
D. Pipe Material		Nominal Size	
E. Pipe Installed: 1. Horizontal		_ Total Length of Pipe	ft.
No. Pipe in Trench _		Depth bottom pipe	ft.
2. Vertical		Total depth of bore hole	ft.

THE FOLLOWING INFORMATION IS NEEDED TO CHECK PERFORMANCE OF UNIT.

LOOP SIDE DATA 8. Entering fluid temperature
8. Entering fluid temperature
9. Entering fluid pressure
10. Leaving fluid temperature
11. Leaving fluid temperature
12. Pressure drop through coil
13. Gallons per minutes through water coil
14. Fluid temperature rise
15. Discharge Pressure
16. Suction Line Pressure
17. Voltage at Compressor (unit running)
18. Amperage draw at line side of contactor
19. Amperage draw of compressor common wire
20. Suction line temperature 6" from compressor
21. Superheat at compressor
22. Liquid line temperature at metering device
23. Coil subcooling
LOAD SIDE DATA
24. Entering fluid temperature
25. Entering fluid pressure
26. Leaving fluid temperature
27. Leaving fluid temperature
28. Pressure drop through coil
29. Gallons per minutes through water coil
30. Fluid temperature rise
31. Other information about installation

* Make sure the desuperheater is de-activated if installed.