### INSTRUCCIONES DE INSTALACIÓN Y LISTA DE PIEZAS DE REEMPLAZO

### ESTADO SÓLIDO DE LA SERIE MC4002S CONTROLADOR DE ADELANTO/RETARDO DE LA UNIDAD DOBLE



Bard Manufacturing Company, Inc. Bryan, Ohio 43506 www.bardhvac.com

Manual n.º: Reemplaza: Fecha: 2100S614H 2100S614G 16-8-17

### **CONTENIDO**

| Cómo obtener otras publicaciones e información                                                             | 3            | Figuras                         |                                                                                                |
|------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|------------------------------------------------------------------------------------------------|
| Información general del MC4002S                                                                            |              | Figura 1                        | Conexiones del controlador A/C de 1 etapa (Serie                                               |
| Daño en el envío                                                                                           |              |                                 | WA/WL, W**A/W**L) s/economizadores19                                                           |
| General                                                                                                    |              | Figura 2                        | Conexiones del controlador A/C de 1 etapa (Serie                                               |
| Teoría de funcionamiento                                                                                   |              |                                 | W**AA/W**LA) s/economizadores20                                                                |
| Certificaciones del controlador  Características y especificaciones de controladores                       | 4            | Figura 3                        | Conexiones del controlador A/C de 2 etapas (Serie WA*S/WL*S). Sin economizadores21             |
| básicos                                                                                                    | _            | Figura 4                        | Conexiones del controlador A/C de 1 etapa (Serie                                               |
| Controlador básico MC4002S  Montaje del controlador                                                        | 3            | Ū                               | WA/WL, W**A/W**L). Sin economizador con                                                        |
| Instrucciones de instalación                                                                               | 5            |                                 | tablero de alarma y tablero de comun. CB5000.22                                                |
| Sensores de temperatura                                                                                    | 0            | Figura 5                        | Conexiones del controlador A/C de 1 etapa (Serie                                               |
| Dos entradas opcionales del sensor                                                                         | 5            | Ū                               | W**AA/W**LA). Sin economizador con tablero de                                                  |
| Lógica del sensor de temperatura                                                                           |              |                                 | alarma y tablero de comun. CB500023                                                            |
| Utilización de sensores múltiples                                                                          | 5            | Figura 6                        | Conexiones del controlador A/C de 2 etapas (Serie                                              |
| Especificaciones de entrada/salida del controlador                                                         |              |                                 | WA*S/WL*S). Sin economizador con tablero de                                                    |
| Conexiones del controlador MC4002S                                                                         |              |                                 | alarma y tablero de comun. CB500024                                                            |
| Características y especificaciones de los tableros de ala                                                  |              | Figura 7                        | Conexiones del controlador A/C de 1 etapa                                                      |
| MC4002S-A con alarma básica opcional                                                                       |              |                                 | (Serie WA/WL, W**A/W**L). Economizador EIFM                                                    |
| MC4002S-B con alarma de versión mejorada                                                                   | b            |                                 | anterior25                                                                                     |
| Cableado en obra de voltaje bajo Circuito en el MC4002S                                                    | 7            | Figura 8                        | Conexiones del controlador A/C de 2 etapas                                                     |
| Conexión a tierra del controlador                                                                          | /            |                                 | (Serie WA*S/WL*S). Economizador EIFM estilo                                                    |
| Conectar a tierra                                                                                          | 7            |                                 | anterior26                                                                                     |
| Encendido del controlador                                                                                  |              | Figura 9                        | Conexiones del controlador A/C de 1 etapa (Serie                                               |
| Retardo de tiempo en el encendido                                                                          | 7            |                                 | WA/WL, W**A/W**L) c/economizador EIFM estilo                                                   |
| Circuito de supresión de incendios                                                                         |              |                                 | anterior y c/tablero de alarma/tablero de comun. CB5000                                        |
| Inhabilitación del MC4002S                                                                                 | 7            | F: 10                           |                                                                                                |
| Períodos de retardo por etapas                                                                             |              | Figura 10                       | Conexiones del controlador A/C de 2 etapas (Serie                                              |
| Etapas 1 a 4                                                                                               | 7            |                                 | WA*S/WL*S) c/economizador EIFM estilo anterior y tablero de alarma/tablero de comun. CB5000 28 |
| Funcionamiento del soplador                                                                                | 7            | Figura 11                       | Conexiones del controlador A/C de 1 etapa (Serie                                               |
| Distintas opciones de soplador                                                                             | /            | rigura i i                      | WA/WL, W**A/W**L) con econ. ECONWMT29                                                          |
| adelanto/retardo                                                                                           |              | Figura 12                       | Conexiones del controlador A/C de 1 etapa (Serie                                               |
| Conmutación manual de la unidades                                                                          | 7            | i igaia iz                      | W**AA/W**LA) con econ. ECONWMT30                                                               |
| Función del temporizador de aceleración                                                                    |              | Figura 13                       | Conexiones del controlador A/C de 2 etapas (Serie                                              |
| Prueba de la función Temporizador                                                                          | 7            | 3                               | WA*S/WL*S) con econ. ECONWMT31                                                                 |
| Descripción general de la programación                                                                     | •            | Figura 14                       | Conexiones del controlador A/C de 1 etapa (Serie                                               |
| Botones y funciones                                                                                        | 8            | Ū                               | WA/WL, W**A/W**L) con econ. ECONWMT y                                                          |
| Opción de control de humedad  Agregado de control de humedad opcional                                      | ۵            |                                 | tablero de alarma/tablero de comun. CB500032                                                   |
| Secuencias de funcionamiento de enfriamiento                                                               | 9            | Figura 15                       | Conexiones del controlador A/C de 1 etapa (Serie                                               |
| para configuración alternada adelanto/retardo/                                                             |              |                                 | W**AA/W**LA) con econ. WECOP y tablero de                                                      |
| adelanto/retardo                                                                                           | 9            |                                 | alarma/tablero de comun. CB500033                                                              |
| Secuencias de funcionamiento de enfriamiento                                                               |              | Figura 16                       | Conexiones del controlador A/C de 2 etapas (Serie                                              |
| para configuración no alternada adelanto/adelanto/                                                         |              |                                 | WA*S/WL*S) con econ. ECONWMT y tablero de                                                      |
| retardo/retardo                                                                                            |              | Figure 17                       | alarma/tablero de comun. CB5000                                                                |
| Secuencia de calefacción del funcionamiento<br>Especificaciones para el tablero de comun. a distancia      | . 13         | Figura 17                       | Conexiones del controlador Bombas de calor.<br>Sin economizadores35                            |
| opcional Tablero                                                                                           | 14           | Figura 18                       | Conexiones del controlador Bombas de calor. Sin                                                |
| Tablero de comunicaciones del CB5000                                                                       |              | rigula lo                       | economizador c/tablero de alarma y tablero de                                                  |
| Cableado del controlador                                                                                   |              |                                 | comunicaciones CB5000 opc36                                                                    |
| Consultar diagrama de conexiones                                                                           | . 18         |                                 | Tablero de pantalla de LED de la alarma37                                                      |
| Función de (bloqueo de) seguridad                                                                          |              | Figura 19                       | Conexiones del tablero de alarma para la                                                       |
| Bloqueo y desbloqueo del MC4002S                                                                           | . 18         | rigura 19                       | estrategia Alarma de circuito abierto, normalmente                                             |
| Función del generador en marcha                                                                            |              |                                 | cerrada "NC"38                                                                                 |
| Operación de deshabilitación del generador en estado                                                       | 10           | Figura 20                       | Conexiones del tablero de alarma para la                                                       |
| de espera  Conexión de CC de respaldo                                                                      | . 10         | .5                              | estrategia Alarma de circuito cerrado, normalmente                                             |
| Conexiones de entrada disponibles                                                                          | . 18         |                                 | abierta "NA"39                                                                                 |
| Cableado de la alarma                                                                                      |              |                                 | Etiqueta de la serie MC41                                                                      |
| Alarma de enfriamiento de la segunda etapa                                                                 |              |                                 |                                                                                                |
|                                                                                                            | . 37         | Figura 21                       | Diagrama descriptivo de la lista de partes42                                                   |
| Alarmas de presión del refrigerante                                                                        | . 37         | J                               | Diagrama descriptivo de la lista de partes42                                                   |
| Alarmas de presión del refrigerante  Secuencia de ventilación de emergencia  Instrucciones de programación | . 37<br>. 37 | Figura 21 <b>Tablas</b> Tabla 1 | Diagrama descriptivo de la lista de partes42  Selección del diagrama de conexión19             |

### Cómo obtener otras publicaciones e información

Estas publicaciones pueden ayudarlo a instalar el aire acondicionado o la bomba de calor. Por lo general, puede encontrarlas en la biblioteca de su zona o comprarlas directamente a la editorial. Asegúrese de consultar la edición actual de cada norma.

Norma para la instalación ...... ANSI/NFPA 90A de aire acondicionado y sistemas de ventilación

Norma para calefacción por ...... ANSI/NFPA 90B aire caliente y sistemas de aire acondicionado

#### PARA OBTENER MÁS INFORMACIÓN, COMUNÍQUESE CON ESTAS EDITORIALES:

ACCA Air Conditioning Contractors of America (Contratistas de Aire Acondicionado de América)

> 1712 New Hampshire Avenue, NW Washington, DC 20009 Teléfono: (202) 483-9370

Fax: (202) 234-4721

ANSI American National Standards Institute (Instituto Nacional Estadounidense de Normas)

11 West Street, 13th Floor Nueva York, NY 10036

Teléfono: (212) 642-4900 Fax: (212) 302-1286

ASHRAE American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc.

1791 Tullie Circle, N.E. Atlanta, GA 30329-2305 Teléfono: (404) 636-8400 Fax: (404) 321-5478

**BARD** Bard Manufacturing Company, Inc.

1914 Randolph Drive Bryan, OH 43506 Teléfono: (419) 636-1194 Fax: (419) 636-2640

### \*\*IMPORTANTE\*\*

El equipo tratado en este manual debe ser instalado por técnicos en mantenimiento e instalación entrenados y con experiencia. Lea el manual completo antes de proceder.

#### DAÑO EN EL ENVÍO

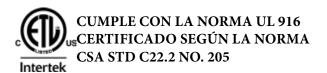
Al recibirse el equipo, se debe controlar la caja de cartón para detectar la presencia de signos externos de daños en el envío. Si se encuentran daños, la parte receptora debe comunicarse de inmediato con el último transportista, preferentemente por escrito, para solicitar inspección por parte del agente del transportista.

#### **GENERAL**

Estas instrucciones explican el funcionamiento, la instalación y la resolución de problemas del controlador MC4002S.

Todo el cableado interno está completo. Conecte únicamente cableado en obra de voltaje bajo en las bandas de los terminales designadas.

El uso del MC4002S está previsto para unidades que tengan o no economizadores, puede configurarse para usarlo con bombas de calor y tiene una función de control de deshumidificación si se le conecta un controlador de humedad opcional. Control de deshumidificación no puede ser utilizado con la bomba de calor.


Cada unidad debe tener el tamaño adecuado para manejar la carga total de la estructura si se requiere una redundancia del 100%.

Se recomienda instalar un relé de retardo de cinco (5) minutos para el compresor en cada unidad, si no lo tiene incluido.

El controlador MC4002S es apto tanto para un funcionamiento de 50 como de 60 HZ y puede configurarse por completo, de modo tal que puede usarse prácticamente en cualquier instalación. Consulte Funciones programables del controlador y configuraciones predeterminadas.

#### **TEORÍA DE FUNCIONAMIENTO**

El controlador se utiliza para controlar dos aires acondicionados de pared desde un solo sistema de control. Este provee redundancia total a la estructura y un desgaste igual en ambas unidades. Puede utilizarse con unidades que tengan o no economizadores y se recomienda que ambas unidades estén equipadas por igual.



El controlador MC4002S puede configurarse para una secuencia alternativa (adelanto/retraso/adelanto/retraso), que es una configuración predeterminada. Puede cambiarse a una secuencia que no sea alterna (adelanto/adelanto/retraso/retraso), según se requiera para aplicaciones especiales o de acuerdo con la preferencia del usuario.

El MC4002S puede estar equipado con uno de dos tableros de alarma; estos pueden instalarse en la fábrica o en la obra en cualquier momento, si así se desea.

En el caso de que solo el controlador básico se instale inicialmente, este puede actualizarse fácilmente a través de una instalación en obra simple de acción inmediata y conectable de cualquiera de los tableros de alarma, para lo que solo debe conectarse el circuito de alarma del edificio a los tableros de alarma. Se utilizan relés de alarma con contacto seco en forma de C para ofrecer una conexión NA (normalmente abierta) y NC (normalmente cerrada) conforme al protocolo específico de alarma del usuario y para proporcionar una flexibilidad completa a fin de cumplir con los requisitos del usuario. Todos los accionamientos de alarma están indicados individualmente en el panel frontal controlador.

Existe una opción de comunicación remota basada en Ethernet que puede instalarse tanto en la fábrica como en la obra. Consulte la sección sobre el módulo de comunicación.

#### CERTIFICACIONES DEL CONTROLADOR

El tablero controlador principal, los tableros de alarma opcionales, el módulo de comunicación opcional y los sensores remotos de MC4002S han atravesado pruebas exhaustivas en relación con la inmunidad y las emisiones. Este sistema adhiere a las pautas de la FCC (Comisión Federal de Comunicaciones), en conformidad con los requisitos de la CE, y cumple con las siguientes normas:

#### Serie MC4002S Controlador maestro



Este dispositivo cumple con la Parte 15 de las Reglas de la FCC, Subparte B, Clase A. El funcionamiento está sujeto a las dos condiciones siguientes:

- Este dispositivo no debe causar interferencias perjudiciales.
- 2. Este dispositivo debe aceptar cualquier interferencia recibida, incluida aquella que pueda ocasionar un un funcionamiento indeseado.

Este dispositivo cumple con las Normas de la CE EN55011/EN50081 y EN55024 para Equipos ISM, Clase A.

Este dispositivo ISM también cumple con el ICES (Servicio de Evaluación de Credenciales Internacionales) – 001 canadiense.

Bard Manufacturing Company, Inc. Bryan, OH 43506

#### CARACTERÍSTICAS Y ESPECIFICACIONES DE CONTROLADORES BÁSICOS

#### Controlador básico MC4002S

- •Energía de entrada: Desde 18 hasta 32 V de CA, 60/50 Hz, la energía se suministra desde el A/C N.º 1 o del A/C N.º 2.
- •Circuito de aislamiento: No se requiere poner en fase los voltajes bajos o en línea.
- Energía de reserva: La conexión para -24 V de CC o -48 V de CC (de -20 a -56 V) mantiene el funcionamiento del microprocesador, la indicación del panel frontal y la operación del relé de alarma durante los cortes de energía comerciales.
- •Pantalla digital: LCD de 4 caracteres.
- •Pantalla de temperatura: °F o °C.
- •Salidas de HVAC: Relés en forma de A (NA) (1 A en 24 V de CA)
- •Etapas de control del enfriamiento:
  - 2 etapas por cada unidad de A/C (4 etapas en total) cuando son configuradas para sistemas con economizadores.
  - 1 etapa por cada unidad de A/C (2 etapas en total) cuando son configuradas para sistemas sin economizadores.
- •Etapas de control de calefacción:
  - 1 etapa para cada unidad de aire acondicionado, 2 para cada bomba de calor si se encuentra configurada de esa forma.
- •Circuito de deshumidificación: Requiere el controlador de humedad opcional como señal de entrada.
- •Rango de temperatura de funcionamiento: De 0 a 120 °F (de -18 a 49 °C).
- •Rango de temperatura de almacenamiento: De -20 a 140 °F (de -29 a 60 °C).
- •Precisión de la temperatura: +/- 1 °F desde 60-85 °F (16-30 °C).

+/- 1% fuera de 60-85 °F.

- •Tiempo de cambio para adelanto o retardo: De 0 a 30 días.
- •Precisión de sincronización: +/- 1%
- •Tiempo de retardo entre etapas: 10 segundos entre etapas.
- •Diferencial entre etapas:
  - Etapa 1 a 2: Rango de 2-6 °F, el valor predeterminado es 4.
  - Etapa 2 a 3: Rango de 2-3 °F, el valor predeterminado es 2.
  - Etapa 3 a 4: Rango de 2-3 °F, el valor predeterminado es 2.
- •Diferencial de encendido y apagado: 2 °F (1 °C) es estándar, 4 °F (3 °C) cuando está activado el modo Ciclado excesivo.
- •Rango del punto de ajuste de enfriamiento: De 65 a 90 °F (de 18.3 a 32.2 °C).
- Configuración de confort para una hora: enfriamiento de 72 °F (22 °C) y calefacción de 68 °F (20 °C).
- •Banda inactiva (diferencia entre los puntos de referencia de enfriamiento y de calefacción): De 2 °F a 40 °F (de 1.1 °C a 22.2 °C).
- Interfaz de fuego/humo: Puente de conexión del circuito NC estándar, se quita para la conexión al control del sistema del edificio, apaga ambas unidades de aire acondicionado inmediatamente.
- •Memoria: EEPROM para el punto de ajuste y los parámetros modificables (mantiene los ajustes cuando hay pérdida de energía).
- •Sensores de temperatura de espacio: 1 sensor local es estándar y aceptará hasta 2 sensores remotos opcionales de 35 pies, pieza n.º 8612-023A de Bard. Cuando se utilizan varios sensores se promedian las temperaturas.
- •Caja del controlador: Fabricada con acero prepintado calibre 20; 9.25 pulgadas de ancho x 13.50 pulgadas de alto x 3 pulgadas de profundidad; tiene tapa con bisagra y trece (13) troqueles para acometidas eléctricas de 0.875 pulgadas de diámetro.
- •Indicadores LED (diodos de emisión de luz) para el controlador básico: Unidad de adelanto, etapas de enfriamiento de 1 a 4, etapas de calefacción de 1 a 4 y operación de deshumidificación.
- Seis (6) controles de interruptor de pulsador: Interruptor de encendido y apagado, cambio de unidad de adelanto, aumento y disminución de los puntos de referencia, programación, almacenamiento y confort.

#### MONTAJE DEL CONTROLADOR

Incluidos en la caja de cartón se encuentran el controlador y las instrucciones de instalación.

El controlador debe instalarse en una pared vertical de aproximadamente cuatro (4) pies por encima del suelo y alejado de

corrientes de aire y de puertas o ventanas exteriores. Se incluyen cuatro (4) orificios de montaje para el montaje en la pared y orificios de 7/8 pies para las conexiones de conducto en la base, los laterales y la parte superior del controlador.

#### SENSORES DE TEMPERATURA

El sensor de temperatura estándar (local) tiene conductores de 12 pies y viene instalado de fábrica.

Un sensor secundario se encuentra ubicado internamente en la placa controladora principal y sirve como referencia y como sensor de respaldo del sensor local. Si la diferencia entre los dos sensores es menor que el punto de ajuste diferencial, el sensor local se utilizará como punto de referencia de temperatura del controlador. El diferencial es ajustable 12-20°F (6.7-11.1°C). 12°F (6.7°C) es el valor predeterminado. Si la diferencia entre los dos sensores es mayor que el punto de ajuste diferencial, entonces el controlador comprueba para determinar si el sensor de a bordo está leyendo una temperatura que está entre el SP (punto de ajuste), más el diferencial y el SP menos la DB (banda muerta) menos el diferencial. Si lo es, el sensor de a bordo se convertirá en la lectura válida del sensor y el controlador ignorará la lectura del sensor local. Si no, entonces el controlador aún seguirá utilizando la lectura del sensor local. Esto es para agregar niveles adicionales de capacidad operativa en el raro caso de que el sensor local fallase. Si el controlador está operando en este modo, ello se indica mediante el parpadeo del punto decimal inferior izquierdo en la pantalla. Si no se desea esta función, ajuste el punto de ajuste diferencial a la posición OFF (apagado). Esto desactiva el sensor de a bordo. Esto puede ser necesario si el controlador se encuentra en una habitación y el sensor local se ha trasladado a una habitación diferente. Nota: Para evaluar el momento en que el sensor local es impulsado manualmente en forma más alta o más baja a través de la aplicación de agua tibia o fría en la sonda, el sensor del tablero es inhibido durante los primeros 30 minutos posteriores al encendido o cuando la energía se activa y desactiva en ciclos.

El regulador está diseñado para aceptar 1 o 2 sensores adicionales y los mismos tienen cables de 35 pies de largo. El número de pieza Bard para el sensor opcional con cables de 35 pies es 8612-023A. Estos pueden ser instalados según se requiera en la estructura para abordar los puntos calientes, las barreras a la circulación del aire, etc. Si se utiliza uno o más sensores remotos, el sensor a bordo se desactiva. El sensor local permanece activo.

Se recomienda que los cables conductores del sensor sean instalados en una tubería conduit para fines de protección.

NOTA: Todos los sensores son sensibles a la polaridad. El conductor de cobre debe conectarse a la terminal CU y el conductor de plata a la terminal AG. Los sensores son semiconductores, no RTD. Utilice únicamente los sensores provistos por Bard. Los conductores del sensor pueden tener una extensión de hasta 200 pies. Utilice un par trenzado de 18 awg con conexiones soldadas.

#### LÓGICA DEL SENSOR DE TEMPERATURA

El sensor estándar local **(LSEn)** controla la temperatura en la ubicación del controlador. Si este es el único sensor conectado, este controlará el dispositivo de lectura de la temperatura y la temperatura del espacio (edificio) y también será utilizado para las funciones de alarma por temperatura alta y baja.

Si hay uno o más sensores **REMOTOS** instalados y conectados (**Rem 1** o **Rem 2**), se mostrará el dispositivo de lectura de temperatura y el edificio se controlará según un **promedio** de todos los sensores conectados. Si hay más de 5.6°C de diferencia desde el sensor conectado más alto al más bajo, el control actual se regirá por el sensor más caliente para enfriar y por el sensor más frío para calentar.

Si se utilizan placas de alarma, la lectura más alta de cualquier sensor conectado se utilizará para la alarma de alta temperatura y el sensor de lectura más baja se utilizará para la alarma de baja temperatura. El sensor a bordo se ignora si dos (2) o más sensores están conectados a las entradas de los sensores Local, Rem 1 o Rem 2.

#### CONTROLADOR BÁSICO MC4002S **ESPECIFICACIONES DE ENTRADAS Y SALIDAS**

#### **CONEXIONES DEL CONTROLADOR** MC4002S

#### Ubicado en el tablero controlador principal

Unidad N.º 1 C: común de 24 V de CA

> R: caliente de 24 V de CA G: ventilador (forma de A, NA)

Y1: enfriamiento de la 1.ª etapa (forma de A, NA) Y2: enfriamiento de la 2.ª etapa (forma de A, NA)

W: calor (forma de A, NA)

Unidad N.º 2 C: común de 24 V de CA

> R: caliente de 24 V de CA G: ventilador (forma de A, NA)

Y1: enfriamiento de la 1.ª etapa (forma de A, NA) Y2: enfriamiento de la 2.ª etapa (forma de A, NA)

W: calor (forma de A, NA)

F1-F2 Interfaz de fuego/humo

Rem 1

Rem 2

Gen

Enviada con el puente de conexión instalado (a)

NOTA:

Los sensores son

semiconductores.

no RTD.

Utilice

únicamente

sensores Bard.

48 V de CC Energía de entrada de respaldo

-24 V de CC o -48 V de CC Rango de -20 V a -56 V

Local Sensor principal, conductores de 12 pulgadas

CU: cobre, AG: plata

Sensible a la polaridad

Sensor remoto interior opcional

CU: cobre, AG: plata

Sensible a la polaridad

Sensor remoto interior opcional CU: cobre, AG: plata

Sensible a la polaridad

Interfaz del generador G1-G2

Enviada con el puente de conexión instalado (a)

H1-H2 Entrada del controlador de humedad

Requiere un controlador opcional

Instalado en la obra

(a) Estas conexiones requieren un puente de conexión o un relé de contacto normalmente cerrado (NC) en la interfaz de fuego/humo y de generador para que funcione el controlador.

Nota: Todos los relés de alarma y de salida son de contacto seco clasificados en 1 A en 24 V de CA.

Nota: Todas las salidas de relés de alarma tienen un retardo de 10 segundos antes de su emisión para proteger contra las señales de alarma por interferencia.

#### CARACTERÍSTICAS Y ESPECIFICACIONES DE LOS TABLEROS DE ALARMA

MC4002S-A con tablero de alarma básico y opcional (entradas y salidas)

NOTA: Si este tablero de alarma no fue originalmente instalado en la fábrica, puede instalarse en la obra en cualquier momento. El número de pieza de Bard es AB3000-A.

Entradas

Bloqueo 1 2, 3: entrada desde HVAC N.º 1 Bloqueo 2 2, 3: entrada desde HVAC N.º 2

Salidas

Fuego/humo Forma de C (SPDT) Forma de C (SPDT) Bloqueo 1

Alarma refrigerante de HVAC N.º 1

Bloqueo 2 Forma de C (SPDT)

Alarma refrigerante de HVAC N.º 2

Pérdida de energía 1 Forma de C (SPDT)

Pérdida de energía de HVAC N.º 1

Pérdida de energía 2 Forma de C (SPDT)

Pérdida de energía de HVAC N.º 2

Temperatura baja Forma de C (SPDT)

Alarma por temperatura baja

Temperatura alta 1 Forma de C (SPDT)

Alarma por temperatura alta N.º 1

MC4002S-B con versión mejorada del tablero de la alarma (Salidas adicionales) más entradas/salidas del MC4002S - A

*NOTA*: Si este tablero de alarma no fue originalmente instalado en la fábrica, puede instalarse en la obra en cualquier momento. El número de pieza de Bard es AB3000-B.

Temperatura alta 2 Forma de C (SPDT)

Alarma por temperatura alta N.º 2

Forma de C (SPDT) Controlador

Alarma por falla del controlador -

Consulte la nota (a)

Economizador 1 E, F: forma de A (NA) – Consulte la nota (b) Economizador 2 E, F: forma de A (NA) – Consulte la nota (b) 2.ª etapa

Forma de C (SPDT)

2Alarma de enfriamiento de la 2.ª etapa -Consulte la nota (c)

- (a) La alarma sólo se activará si el procesador de la placa principal falla o si la alarma de placa a placa principal el cable está dañado.
- (b) Realice estas conexiones con los terminales E y F en HVAC 1 y 2, respectivamente, si desea tener economizadores abiertos para una ventilación de emergencia en la condición del punto de ajuste N.º 2 de la alarma por temperatura alta.
- Para las unidades con compresores de 2 etapas, se activa una alarma de enfriamiento de la 2.ª etapa en el inicio de la etapa 3 de enfriamiento.

Los relés de la alarma pueden conectarse para una estrategia NA (alarma de circuito cerrado) o NC (alarma de circuito abierto). Los relés de la alarma pueden utilizarse en forma individual si existen suficientes puntos de alarma disponibles en el edificio o pueden distribuirse en grupos más pequeños, o incluso en un solo grupo, para que puedan utilizarse todas las capacidades de la alarma. Cuando se agrupan varias alarmas y se emiten como una sola alarma, no habrá una indicación externa sobre el problema específico que pudo haber ocurrido, sino solo aquella alarma del grupo que se activó. El problema de la alarma individual se visualizará en la pantalla de los LED, en la superficie del controlador.

Manual 2100S614H Página 6 de 43

#### CABLEADO EN OBRA DE VOLTAJE BAJO

El MC4002S recibe la energía de los aires acondicionados que él mismo controla, únicamente con un voltaje bajo de 24 V de CA (18-32 V).

El circuito en el MC4002S aísla los suministros de energía de los dos aires acondicionados, lo que impide que ocurran problemas de alimentación por detrás o de fasaje. Además, si un aire acondicionado pierde energía, el MC4002S y el otro aire acondicionado no resultarán afectados y seguirán funcionando normalmente.

Conecte el cableado en obra de voltaje bajo desde cada unidad conforme a los diagramas de cableado en obra de voltaje bajo en la sección Cableado del controlador. NOTA: Debe utilizarse un cableado de control calibre 18, como máximo. El uso de un cableado de calibre más pesado puede generar una tensión excesiva en el tablero de control cuando la puerta se abre y se cierra. Cree un bucle de cableado para que la puerta pueda cerrarse y abrirse sin ejercer demasiada tensión en los bloques de los terminales.

#### PUESTA A TIERRA DEL CONTROLADOR

Debe conectarse una toma a tierra confiable, además de cualquier puesta a tierra que haya desde el conducto. Se suministran terminales de puesta a tierra para este propósito.

#### **ENCENDIDO DEL CONTROLADOR**

Cada vez que se suministra energía en primer lugar al controlador, se produce un retardo de veinte (20) segundos antes de que cualquier función (que no sea la pantalla) se active. Este retardo se produce si el botón On/Off (Encendido y apagado) del controlador se utiliza cuando hay 24 V de CA desde los aires acondicionados, y también si el controlador se encuentra en la posición ON (Encendido) y se retiran 24 V de CA desde los aires acondicionados y luego se restablecen.

#### CIRCUITO DE SUPRESIÓN DE FUEGO

Para deshabilitar el MC4002S y apagar ambos aires acondicionados, se pueden utilizar los terminales F1 y F2. Los terminales F1 y F2 deben conectarse juntos en puente para un funcionamiento normal. Un conjunto de contactos secos normalmente cerrados (NC) puede conectarse a través de los terminales y el puente de conexión de fábrica puede eliminarse para utilizarlo con un sistema de supresión de fuego instalado en la obra. Los contactos deben abrirse si se detecta fuego. Consulte el diagrama de conexión adecuado; figuras 1, 2 o 3 para esta conexión. Los contactos deben clasificarse para el funcionamiento del servicio piloto en un mínimo de 2 amperios en 24 V de CA. Debe utilizarse un cable blindado (calibre 22, como mínimo) y debe realizarse la puesta a tierra del blindaje en la caja del controlador.

NOTA IMPORTANTE: Los modelos anteriores de Bard R-22 emplean un control electrónico del soplador que tiene un retardo en la desconexión del soplador de 60 segundos. Los modelos R-410A de producción actual no utilizan un dispositivo de retardo en la desconexión del soplador, y el recordatorio de este (párrafo) no se aplica en este caso. Para lograr el apagado inmediato del motor del soplador, además de deshabilitar la función de ejecución de los aires acondicionados, se requerirá una simple modificación del cableado en el control del soplador ubicado en el panel de control eléctrico de los aires acondicionados que son controlados por el controlador de adelanto/retraso. Para eliminar el retardo en la desconexión del soplador de 60 segundos, desconecte y aísle el cable que viene conectado de fábrica al terminal R en el control electrónico del soplador y luego conecte un puente de conexión desde el terminal G en

el control del soplador hasta el terminal R en el control del soplador. El control electrónico del soplador ahora funcionará como un relé de encendido y apagado sin ningún retardo en la desconexión, y el motor del soplador dejará de ejecutarse de inmediato cuando se active el circuito de supresión de fuego F1-F2 (abierto).

#### PERÍODOS DE RETARDO POR ETAPAS

Los siguientes retardos son incorporados tanto para el enfriamiento como para la calefacción:

- **Etapa 1**: 0 segundos para el soplador (si aún no está encendido en forma continua). 10 segundos para la salida de enfriamiento o de calefacción.
- Etapa 2: 10 segundos después de la etapa 1 para el soplador. 10 segundos adicionales para la salida de enfriamiento o de calefacción.
- **Etapa 3**: 10 segundos después de la etapa 2.
- Etapa 4: 10 segundos después de la etapa 3.

Nota: Para las etapas de enfriamiento 1 y 2, el LED de la etapa parpadeará durante 10 segundos mientras se retarda la salida de enfriamiento luego de que se solicite esa etapa. También hay un retardo después de que se completa la etapa; y después de que el LED deje de parpadear, la etapa se apagará. Hay un retardo mínimo de 10 segundos entre las etapas 2 y 3, y 3 y 4, pero ninguna salida retardada cuando la etapa se enciende o se apaga, y el LED para esas etapas no parpadeará.

#### **FUNCIONAMIENTO DEL SOPLADOR**

El controlador puede configurarse para que tenga el ciclo de los sopladores HVAC principales encendidos y apagados a pedido; para que todos los sopladores se ejecuten constantemente; o para que el soplador de la unidad de adelanto se ejecute continuamente y el soplador de la unidad de adelanto realice el ciclado a pedido. La configuración predeterminada es el inicio y el detenimiento de los sopladores a pedido. También hay una opción para tener el ciclo de todos los sopladores encendido si se conecta un sensor remoto y si se observa una diferencia de temperatura de más de 5 °F entre cualquiera de los dos sensores. Esto ayuda a redistribuir la carga de calor dentro de la estructura y debería reducir el tiempo de funcionamiento del compresor.

Cuando se completa cualquiera de las etapas, el LED de la etapa parpadeará por diez (10) segundos antes de que la etapa se apague efectivamente.

#### CARACTERÍSTICA DE AVANCE (CAMBIO) DE LA UNIDAD DE ADELANTO/RETARDO

Al presionar el botón Advance (Avanzar) por un (1) segundo, las unidades de adelanto y de retardo cambiarán las posiciones. Esto puede resultar útil sobre los procedimientos de servicio y de mantenimiento

#### FUNCIÓN DEL TEMPORIZADOR DE **ACELERACIÓN**

Al presionar el botón con la flecha UP (Arriba) por (5) segundos, se activará y se acelerará el modo (aceleración), lo que producirá incrementos en el tiempo de cambio normal de días que se reducirán a segundos. Ejemplo: 7 días se convierten en 7 segundos. Cuando aparezca ACC, suelte el botón. Cualquiera sea el LED que esté encendido, la unidad de adelanto indicadora parpadeará por cada segundo hasta que el controlador realice la conmutación. Este es un control para la funcionalidad del temporizador.

#### DESCRIPCIÓN GENERAL DE LA PROGRAMACIÓN BOTONES Y FUNCIONES DEL CONTROLADOR MC4002S

#### Botón On/Off (Encendido y apagado)

- Al presionar y soltar el botón On/Off (Encendido y apagado) para encender el controlador, se iluminará la pantalla de 4 caracteres y se prenderá el LED de la unidad de adelanto.
- 2. Presione y suelte el botón On/Off (Encendido y apagado) para apagar el controlador. El controlador se apagará y las unidades de A/C se detendrán.

#### Botón Comfort (Comodidad)

- 1. Presione y suelte el botón Comfort (Comodidad) para cambiar el punto de ajuste de enfriamiento a 22.2°C y el punto de ajuste de calefacción a 20°C durante 1 hora.
- 2. Los puntos de referencia volverán automáticamente a la configuración programada después de 1 hora.
- 3. Al presionar el botón Comfort (Comodidad) en el transcurso del período de 1 hora, se desactiva el cambio del punto de ajuste.
- 4. La pantalla de temperatura destellará la temperatura actual mientras se encuentre en modo de anulación.

#### Botón Program (Programación)

- 1. Presione el botón Program (Programación) y suéltelo cuando el mensaje Prog aparezca en la pantalla.
- 2. Consulte las instrucciones de programación y siga estos comandos para cambiar las configuraciones predeterminadas.

#### Botón Advance/Change/Save (Avanzar, cambiar y guardar)

- Presione y suelte el botón Advance (Avanzar) para cambiar las posiciones de la unidad de adelanto y de retardo.
- 2. En el modo Program (Programación), los botones Down (Abajo) y Up (Arriba) se utilizan para desplazarse a través de los pasos de programación.
- 3. Cuando una pantalla está intermitente, la función particular de ese paso de programación está seleccionada, y la pantalla alternará entre la función y la configuración.
- 4. Para cambiar la configuración presione el botón Change (Cambiar); la pantalla dejará de destellar y podrá cambiar la configuración.
- 5. Utilice los botones Down (Abajo) y Up (Arriba) para cambiar a la configuración deseada, presione el botón Save (Guardar) y proceda según su preferencia.
- 6. Cuando finalice con los cambios de programación, presione el botón Program (Programación) hasta que la pantalla deje de destellar y se visualice la temperatura ambiente en pantalla.

#### Botones Down (Abajo) y Up (Arriba)

Estos botones se utilizan para cambiar las configuraciones junto con el botón Advance/Change/Save (Avanzar, cambiar y guardar) en el modo de programación.

#### FUNCIONES PROGRAMABLES DEL CONTROLADOR Y CONFIGURACIONES PREDETERMINADAS

| Orden/<br>Visualizatión | Descripción                                                                                                                                                                                                                                         | Rango u opción                                                              | Predeterminado             |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------|--|
| LSEn                    | Temp Temperatura en el sensor local (principal)                                                                                                                                                                                                     | _                                                                           | _                          |  |
| SP                      | Temperatura del punto de ajuste de refrigeración                                                                                                                                                                                                    | De 65 a 90°F (de 18°C a 32°C)                                               | 77°F (25°C)                |  |
| db                      | Banda inactiva entre SP de enfriamiento y punto de ajuste de calefacción                                                                                                                                                                            | De 2 a 40°F (de 1 a 24°C)                                                   | 17°F (9.4°C)               |  |
| r1                      | Temperatura en la ubicación del sensor remoto 1, si está conectado                                                                                                                                                                                  | _                                                                           | _                          |  |
| r2                      | Temperatura en la ubicación del sensor remoto 2, si está conectado                                                                                                                                                                                  | _                                                                           | _                          |  |
| cFAn                    | Funcionamiento de ventilador continuo                                                                                                                                                                                                               | Ninguno, con adelanto, ambos                                                | Ninguno                    |  |
| deg                     | El sistema del controlador funciona en °F o °C                                                                                                                                                                                                      | °F or °C                                                                    | °F                         |  |
| Alt                     | Secuencia alterna Adelanto/Retraso/Adelanto/Retraso o Secuencia no alterna Adelanto/<br>Adelanto/Retraso/Retraso — Sí = Alterna                                                                                                                     | Sí o No                                                                     | Sí                         |  |
| LLCO                    | Tiempo de conversión adelanto/retraso (Días)                                                                                                                                                                                                        | De 1 a 30 días, o 0 para deshabilitado                                      | 7                          |  |
| HP                      | Lógica de bomba de calor habilitada - solo para bombas de calor de 1 etapa y secuencia de fuerzas de adelanto-retraso (anula una configuración No-Alt.)                                                                                             | Sí o No                                                                     | No                         |  |
| Cbd5                    | Ambos sopladores de la unidad 1 y 2 automáticamente funcionan si delta T >5F entre 2 sensores conectados cualesquiera                                                                                                                               | Sí o No                                                                     | Sí                         |  |
| OFde                    | Retardo de desconexión de la unidad de adelanto de 3 minutos y la unidad de retraso de 4 minutos habilitada                                                                                                                                         | Sí o No                                                                     | No                         |  |
| crun                    | Tiempo de ejecución mínimo del compresor de 3 minutos habilitado                                                                                                                                                                                    | Sí o No                                                                     | No                         |  |
| LoAL                    | Punto de ajuste de la alarma de temperatura baja.                                                                                                                                                                                                   | De 28 a 65°F (-2 a 18°C)                                                    | 45°F (7.2°C)               |  |
| HAL1                    | Punto de ajuste de la alarma de temperatura alta n.º 1                                                                                                                                                                                              | De 70°F a 120°F (de 21 a 49°C)                                              | 90°F (32°C)                |  |
| HAL2                    | Punto de ajuste de la alarma de temperatura alta n.º 2                                                                                                                                                                                              | De 70°F a 120°F (de 21 a 49°C)                                              | 95°F (35°C)                |  |
| Locd                    | El controlador está bloqueado y no se pueden realizar cambios. Consulte autoridad del edificio.                                                                                                                                                     | Si está bloqueado, la<br>pantalla mostrará Locd si se<br>intentaron cambios | Desblo-queado              |  |
| Diferencial e           | ntre etapas                                                                                                                                                                                                                                         |                                                                             |                            |  |
| ISd2                    | De Etapa 1 a Etapa 2                                                                                                                                                                                                                                | 2, 3, 4, 5 or 6°F<br>(de 1.1, 1.6, 2.2, 2.8, 3.3°C)                         | 4 (2.2°C)                  |  |
| ISd3                    | De Etapa 2 a Etapa 3                                                                                                                                                                                                                                | 2 or 3°F (de 1.1, 1.6°C)                                                    | 2 (1.1°C)                  |  |
| ISd4                    | De Etapa 3 a Etapa 4                                                                                                                                                                                                                                | 2 or 3°F (de 1.1, 1.6°C)                                                    | 2 (1.1°C)                  |  |
| Diferencial d           | e encendido/apagado (Histéresis)                                                                                                                                                                                                                    |                                                                             |                            |  |
| CSon                    | Llevar a "Encendido" por sobre SP para el enfriamiento de la etapa 1                                                                                                                                                                                | +1 or 2°F (de 1.1, 1.6°C)                                                   | 2 (1.1°C)                  |  |
| CSoF                    | Llevar a "Apagado" por debajo de SP para el enfriamiento de la etapa 1                                                                                                                                                                              | -1, 2, 3 or 4°F<br>(de5, -1.1, -1.6°C)                                      | -2 (-1.1°C)                |  |
|                         | El enfriamiento de las etapas 2, 3 y 4 automáticamente se configuran igual que las decisiones tomadas para la etapa 1                                                                                                                               |                                                                             |                            |  |
| HSoo                    | Todas las etapas de calentamiento son iguales al diferencial -/+ de encendido y apagado                                                                                                                                                             | -1/+1 or -2/+2<br>(de -0.5/+0.5°C a -1.1 / +1.1°C)                          | -2/+2<br>(-1.1°C / +1.1°C) |  |
| CoPr                    | Compresor de 1 o 2 etapas, si está configurado en 1, se activa la alarma de enfriamiento de la etapa 2 en la Llamada de enfriamiento 2, si está configurado en 2, se activa la alarma de enfriamiento de la etapa 2 en la Llamada de enfriamiento 3 | 1 or 2                                                                      | 1                          |  |
| ob5d                    | Diferencial entre el Sensor Local y el sensor a Bordo                                                                                                                                                                                               | 12 to 20, OFF (de 6.7 a 11.1°C)                                             | 12 (6.7°C)                 |  |

Manual 2100S614H Página 8 de 43

#### **OPCIÓN DE CONTROL DE HUMEDAD**

**Nota:** Esta función no está disponible si el controlador está configurado para una bomba de calor.

El sistema de aire acondicionado estándar puede adaptarse para que realice un control de deshumidificación agregándole un controlador de humedad simple que se cierra al ascender y está conectado con los terminales H1 y H2 en el tablero controlador principal. Pieza N.º 8403-038 (H600A 1014) de Bard, recomendada. Ambas unidades de HVAC deben estar equipadas con calefacción eléctrica para que esta secuencia funcione correctamente. Consulte el diagrama de conexión adecuado; desde la figura 1 a la 12 para esta conexión:

- El control de temperatura siempre tiene prioridad respecto de la deshumidificación. Si hay alguna etapa de demanda de enfriamiento activa, se bloquea la secuencia de deshumidificación.
- Si se completan todas las etapas de enfriamiento y la humedad relativa se encuentra por encima del punto de ajuste del controlador de humedad:
  - a. La luz verde de Operación de deshumidificación se encenderá, y el compresor de la unidad de <u>retraso</u> y el soplador funcionarán hasta que se complete el punto de ajuste del control de humedad (o se cancele por una solicitud de enfriamiento).
  - b. Si la temperatura del espacio desciende a 67°F de 19.4°C, el calentador eléctrico de la unidad de <u>adelanto</u> realizará el ciclo para ayudar a mantener la temperatura del edificio. El ciclo se apagará en 69°F de 20.6°C.
  - c. Si la temperatura del espacio desciende a 64°F de 17.8°C, la luz de calentamiento de la etapa 2 se encenderá y el compresor de la unidad de retraso que está funcionando para el modo de deshumidificación apagará el ciclo hasta que la temperatura del edificio ascienda por encima de los 65°F de 18.3°C desde el calor y la carga del edificio de la 1.ª etapa. La luz verde de Operación de deshumidificación permanece encendida durante esta secuencia, y cuando la luz de calentamiento de la etapa 2 se apaga, el compresor se enciende. El calentador eléctrico en la unidad de retraso se bloquea en el modo de deshumidificación.

Las salidas G, Y1 y Y2 de la unidad de retraso se conectan durante la secuencia de deshumidificación. Esto ocurre tanto para las configuraciones del controlador alternas como no alternas.



El punto de ajuste del controlador de humedad debe estar en un área de humedad relativa de 50-60%: Configurar el controlador en configuraciones más bajas ocasionará excesivos tiempo y costo de operación para el recalentamiento eléctrico, y en casos extremos puede causar el congelamiento de la bobina (interna) del evaporador si hay períodos de baja carga (de calor) del equipo interno.

#### SECUENCIAS DEL FUNCIONAMIENTO DE ENFRIAMIENTO PARA UNA CONFIGURACIÓN ALTERNA ADELANTO/ RETRASO/ADELANTO/RETRASO

#### 1. <u>Unidades del compresor de la etapa 1 sin economizador</u>

El punto de ajuste de enfriamiento de la 1.ª etapa es la entrada de configuración (SP) en el controlador. El valor predeterminado de fábrica es 77°F (25°C). Si hay una solicitud de enfriamiento, el soplador de la unidad de <u>adelanto</u> se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 1 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se iniciará el compresor.

El 2.º punto de ajuste de enfriamiento es 4ºF de 2.2°C (configuración predeterminada, seleccionable por el usuario, de 2-6 ºF de 1.1-3.3°C) más cálido que la etapa 1. Si hay una solicitud de enfriamiento de la 2.ª etapa, el soplador de la unidad de <u>retraso</u> se enciende (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 2 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se iniciará el compresor.

Las etapas 3.ª y 4.ª son salidas funcionales, pero no tienen nada para controlar.

#### 2. Unidades del compresor de la etapa 2 sin economizador

El punto de ajuste de enfriamiento de la 1.ª etapa es la entrada de configuración (SP) en el controlador. El valor predeterminado de fábrica es 77 °F (25 °C). Si hay una solicitud de enfriamiento, el soplador de la unidad de <u>adelanto</u> se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 1 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se iniciará el compresor de la unidad de <u>adelanto</u> en el funcionamiento de la capacidad parcial de la etapa 1 del compresor.

El 2.º punto de ajuste de enfriamiento es 4 °F de 2.2°C (configuración predeterminada, seleccionable por el usuario, de 2-6 °F de 1.1-3.3°C) más cálido que la etapa 1. Si hay una solicitud de enfriamiento de la 2.ª etapa, el soplador de la unidad de <u>retraso</u> se enciende (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 2 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se iniciará el compresor de la unidad de <u>retraso</u> en el funcionamiento de la capacidad parcial de la etapa 1 del compresor.

El 3.er punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 2. Si hay una solicitud de enfriamiento de la 3.ª etapa, el LED de la etapa 3 se vuelve sólido (sin retardo), y el compresor de la unidad de <u>adelanto</u> se conmutará al funcionamiento de la capacidad total de la etapa 2 del compresor.

El 4.º punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 3. Si hay una solicitud de enfriamiento de la etapa 4, el LED de la etapa 4 se vuelve sólido (sin retardo), y el compresor de la unidad de <u>retraso</u> se conmutará al funcionamiento de la capacidad total de la etapa 2 del compresor.

#### 3. <u>Unidades del compresor de la etapa 1 con</u> economizadores EIFM anteriores (sensor OD de entalpía)

El punto de ajuste de enfriamiento de la 1.ª etapa es la entrada de configuración (SP) en el controlador. El valor predeterminado de fábrica es 77 °F (25 °C). Si hay una solicitud de enfriamiento, el soplador de la unidad de <u>adelanto</u> se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 1 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se encenderá la salida de enfriamiento Y1 de la unidad de <u>adelanto</u>. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de <u>adelanto</u> funcionará en lugar del compresor. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en lugar del economizador.

El 2.º punto de ajuste de enfriamiento es 4 °F de 2.2°C (configuración predeterminada, seleccionable por el usuario, de 2-6 °F de 1.1-3.3°C) más cálido que la etapa 1. Si hay una solicitud de enfriamiento de la 2.ª etapa, se enciende el soplador de la unidad de<u>retraso</u> (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 2 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se encenderá la salida de enfriamiento Y1 de la unidad de <u>retraso</u>. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de <u>retraso</u> funcionará en lugar del compresor. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en lugar del economizador.

El 3.ºr punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 2. Si hay una solicitud de enfriamiento de la 3.º etapa, el economizador de la unidad de <u>adelanto</u> se cerrará y el compresor comenzará a funcionar.

El 4.º punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 3-3 °F de 1.1-1.6°C) más cálido que la etapa 3. Si hay una solicitud de enfriamiento de la 4.ª etapa, el economizador de la unidad de <u>retraso</u> se cerrará y el compresor comenzará a funcionar

### 4. <u>Unidades del compresor de la etapa 1 con economizadores ECONWMT o WECOP nuevos (consulte la Nota A)</u>

El punto de ajuste de enfriamiento de la 1.ª etapa es la entrada de configuración (SP) en el controlador. El valor predeterminado de fábrica es 77 °F (25 °C). Si hay una solicitud de enfriamiento, el soplador de la unidad de <u>adelanto</u> se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 1 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se encenderá la salida de enfriamiento Y1 de la unidad de <u>adelanto</u>. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de <u>adelanto</u> funcionará en lugar del compresor. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en lugar del economizador.

El 2.º punto de ajuste de enfriamiento es 4 °F de 2.2°C (configuración predeterminada, seleccionable por el usuario, de 2-6 °F de 1.1-3.3°C) más cálido que la etapa 1. Si hay una solicitud de enfriamiento de la 2.ª etapa, se enciende el soplador de la unidad de retraso (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 2 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se encenderá la salida de enfriamiento Y1 de la unidad de retraso. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de retraso funcionará en lugar del compresor. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en lugar del economizador.

El 3.er punto de ajuste de enfriamiento es 2 °F de 1.1 °C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6 °C) más cálido que la etapa 2. Si hay una solicitud de enfriamiento de la 3.ª etapa, el economizador de la unidad de <u>adelanto</u> seguirá funcionando, siempre y cuando las condiciones exteriores sean aceptables, y el compresor comenzará a funcionar.

El 4.º punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 3. Si hay una solicitud de enfriamiento de la 4.ª etapa, el economizador de la unidad de <u>retraso</u> seguirá funcionando, siempre y cuando las condiciones exteriores sean aceptables, y el compresor comenzará a funcionar.

#### 5. <u>Unidades del compresor de la etapa 2 con economizadores</u> <u>EIFM anteriores</u>

El punto de ajuste de enfriamiento de la 1.ª etapa es la entrada de configuración (SP) en el controlador. El valor predeterminado de fábrica es 77 °F (25 °C). Si hay una solicitud de enfriamiento, el soplador de la unidad de <u>adelanto</u> se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 1 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se encenderá la salida de enfriamiento Y1 de la unidad de <u>adelanto</u>. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de <u>adelanto</u> funcionará en lugar del compresor. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en la capacidad parcial de la etapa 1 del compresor, en lugar del economizador.

El 2.º punto de ajuste de enfriamiento es 4 °F de 2.2°C (configuración predeterminada, seleccionable por el usuario, de 2-6 °F de 1.1-3.3°C) más cálido que la etapa 1. Si hay una solicitud de enfriamiento de la 2.ª etapa, se enciende el soplador de la unidad de<u>retraso</u> (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 2 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se encenderá la salida de enfriamiento Y1 de la unidad de <u>retraso</u>. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de <u>retraso</u> funcionará en lugar del compresor. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en la capacidad parcial de la etapa 1 del compresor, en lugar del economizador.

El 3.er punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 2. Si hay una solicitud de enfriamiento de la 3.º etapa, el economizador de la unidad de adelanto se cerrará y el compresor comenzará a funcionar en la etapa 2 de la capacidad total del compresor.

El 4.º punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 3. Si hay una solicitud de enfriamiento de la 4.ª etapa, el economizador de la unidad de <u>retraso</u> se cerrará y el compresor comenzará a funcionar en la etapa 2 de la capacidad total del compresor.

#### Unidades del compresor de la etapa 2 con economizadores ECONWMT o WECOP nuevos (consulte la Nota A)

El punto de ajuste de enfriamiento de la 1.ª etapa es la entrada de configuración (SP) en el controlador. El valor predeterminado de fábrica es 77 °F (25 °C). Si hay una solicitud de enfriamiento, el soplador de la unidad de adelanto se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 1 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se encenderá la salida de enfriamiento Y1 de la unidad de <u>adelanto</u>. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de adelanto funcionará en lugar del compresor. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en la capacidad parcial de la etapa 1 del compresor, en lugar del economizador.

El 2.º punto de ajuste de enfriamiento es 4 °F de 2.2°C (configuración predeterminada, seleccionable por el usuario, de 2-6 °F de 1.1-3.3°C) más cálido que la etapa 1. Si hay una solicitud de enfriamiento de la 2.ª etapa, se enciende el soplador de la unidad deretraso (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 2 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se encenderá la salida de enfriamiento Y1 de la unidad de retraso. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de retraso funcionará en lugar del compresor. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en la capacidad parcial de la etapa 1 del compresor, en lugar del economizador.

El 3. er punto de ajuste de enfriamiento es 2 °F de 1.1 °C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 2. Si hay una solicitud de enfriamiento de la 3.ª etapa, el economizador de la unidad de adelanto seguirá funcionando, siempre y cuando las condiciones exteriores sean aceptables, y el compresor comenzará a funcionar en la capacidad parcial de la etapa 1 del compresor. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor de la unidad de adelanto comenzará a funcionar automáticamente en la capacidad parcial de la etapa 1 del compresor y se extenderá hasta el funcionamiento de la capacidad total de la etapa 2.

El 4.º punto de ajuste de enfriamiento es 2 °F de 1.1°C de (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 3. Si hay una solicitud de enfriamiento de la 4.ª etapa, el economizador de la unidad de retraso seguirá funcionando, siempre y cuando las condiciones exteriores sean aceptables, y el compresor comenzará a funcionar en la capacidad parcial de la etapa 1 del compresor. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor de la unidad de retraso comenzará a funcionar automáticamente en la capacidad parcial de la etapa 1 del compresor y se extenderá hasta el funcionamiento de la capacidad total de la etapa 2.

#### SECUENCIAS DEL FUNCIONAMIENTO DE ENFRIAMIENTO PARA UNA CONFIGURACIÓN NO ALTERNA ADELANTO/ ADELANTO/RETRASO/RETRASO

Nota: Las bombas de calor no pueden operarse en una secuencia no alterna adelanto/adelanto/retraso/retraso. Al seleccionar Heat Pump = Yes (Bomba de calor = Si) se anulará una selección no alterna y el sistema se forzará para una secuencia alterna adelanto/retraso/adelanto/retraso.

#### Unidades del compresor de la etapa 2 sin economizador

El punto de ajuste de enfriamiento de la 1.ª etapa es la entrada de configuración (SP) en el controlador. El valor predeterminado de fábrica es 77 °F (25 °C). Si hay una solicitud de enfriamiento, el soplador de la unidad de adelanto se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 1 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se iniciará el compresor de la unidad de adelanto en el funcionamiento de la capacidad parcial de la etapa 1 del compresor.

El 2.º punto de ajuste de enfriamiento es 4 °F de 2.2°C (configuración predeterminada, seleccionable por el usuario, de 2-6 °F de 1.1-3.3°C) más cálido que la etapa 1, momento en el cual el compresor de la unidad de adelanto se conmutará a la capacidad total de la etapa 2 del compresor.

El 3.er punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 2. Si hay una solicitud de enfriamiento de la 3.ª etapa, el soplador de la unidad de retraso se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 3 parpadeará por 10 segundos antes de alcanzar el estado sólido, y luego se iniciará el compresor de la unidad de retraso en la capacidad parcial de la etapa 1 del compresor.

El 4.º punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 3. Si hay una solicitud de enfriamiento de la etapa 4, el LED de la etapa 4 se vuelve sólido (sin retardo), y el compresor de la unidad de retraso se conmutará al funcionamiento de la capacidad total de la etapa 2 del compresor.

#### <u>Unidades del compresor de la etapa 1 con</u> economizadores EIFM anteriores

El punto de ajuste de enfriamiento de la 1.ª etapa es la entrada de configuración (SP) en el controlador. El valor predeterminado de fábrica es 77 °F (25 °C). Si hay una solicitud de enfriamiento, el soplador de la unidad de adelanto se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 1 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se encenderá la salida de enfriamiento Y1 de la unidad de adelanto. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de adelanto funcionará en lugar del compresor. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en lugar del economizador.

El 2.º punto de ajuste de enfriamiento es 4 °F de 2.2°C (configuración predeterminada, seleccionable por el usuario, de 2-6 °F de 1.1-3.3°C) más cálido que la etapa 1. Si hay una solicitud de enfriamiento de la 2.ª etapa, se encenderá la salida de enfriamiento Y2 de la unidad de <u>adelanto</u>. El economizador de la unidad de adelanto se cerrará y el compresor comenzará a funcionar. Si el compresor ya se está ejecutando desde la solicitud de enfriamiento de la 1.ª etapa debido a que las condiciones exteriores se encuentran fuera del rango de enfriamiento libre, no se produce ninguna acción en el punto de ajuste de la 2.ª etapa.

El 3.er punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 2. Si hay una solicitud de enfriamiento de la 3.ª etapa, el soplador de la unidad de <u>retraso</u> se activará (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 3 parpadeará por 10 segundos antes de alcanzar el estado sólido, y el economizador de la unidad de <u>retraso</u> funcionará si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en lugar del economizador.

El 4.º punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 3. Si hay una solicitud de enfriamiento de la 4.ª etapa, el economizador de la unidad de <u>retraso</u> se cerrará y el compresor comenzará a funcionar. Si el compresor ya se está ejecutando desde la solicitud de enfriamiento de la 3.ª etapa debido a que las condiciones exteriores se encuentran fuera del rango de enfriamiento libre, no se produce ninguna acción en el punto de ajuste de la 2.ª etapa.

#### 3. <u>Unidades del compresor de la etapa 1 con economizadores</u> <u>ECONWMT o WECOP nuevos (consulte la Nota A)</u>

El punto de ajuste de enfriamiento de la 1.ª etapa es la entrada de configuración (SP) en el controlador. El valor predeterminado de fábrica es 77 °F (25 °C). Si hay una solicitud de enfriamiento, el soplador de la unidad de <u>adelanto</u> se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 1 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se encenderá la salida de enfriamiento Y1 de la unidad de <u>adelanto</u>. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de <u>adelanto</u> funcionará en lugar del compresor. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en lugar del economizador.

El 2.º punto de ajuste de enfriamiento es 4 °F de 2.2°C (configuración predeterminada, seleccionable por el usuario, de 2-6 °F de 1.1-3.3°C) más cálido que la etapa 1. Si hay una solicitud de enfriamiento de la 2.ª etapa, se encenderá la salida de enfriamiento Y2 de la unidad de <u>adelanto</u>. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de <u>adelanto</u> seguirá funcionando, y el compresor comenzará a funcionar. Si el compresor ya se está ejecutando en el enfriamiento de la 1.ª etapa debido al rango de enfriamiento libre exterior, no se produce ninguna acción en el punto de ajuste de enfriamiento de la 2.ª etapa.

El 3.ºr punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 2. Si hay una solicitud de enfriamiento de la 3.ª etapa, el soplador de la unidad de <u>retraso</u> se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 3 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se encenderá la salida de enfriamiento Y1 de la unidad de <u>retraso</u>. El economizador de la unidad de <u>retraso</u> funcionará si las condiciones exteriores de

temperatura y humedad están por debajo del punto de ajuste de control del economizador. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en lugar del economizador.

El 4.º punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 3. Si hay una solicitud de enfriamiento de la 4.ª etapa, se encenderá la salida de enfriamiento Y2 de la unidad de retraso al activar el compresor de la unidad deretraso. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de retraso comenzará a funcionar. Si el compresor ya se está ejecutando en el enfriamiento de la 3.ª etapa debido al rango de enfriamiento libre exterior, no se produce ninguna acción en el punto de ajuste de enfriamiento de la 4.ª etapa.

#### 4. <u>Unidades del compresor de la etapa 2 con</u> economizadores EIFM anteriores

El punto de ajuste de enfriamiento de la 1.ª etapa es la entrada de configuración (SP) en el controlador. El valor predeterminado de fábrica es 77 °F (25 °C). Si hay una solicitud de enfriamiento, el soplador de la unidad de <u>adelanto</u> se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 1 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se encenderá la salida de enfriamiento Y1 de la unidad de <u>adelanto</u>. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de <u>adelanto</u> funcionará en lugar del compresor. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en la capacidad parcial de la etapa 1 del compresor, en lugar del economizador.

El 2.º punto de ajuste de enfriamiento es 4 °F de 2.2°C (configuración predeterminada, seleccionable por el usuario, de 2-6 °F de 1.1-3.3°C) más cálido que la etapa 1. Si hay una solicitud de enfriamiento de la 2.ª etapa, se encenderá la salida de enfriamiento Y2 de la unidad de <u>adelanto</u>, momento en el cual el compresor de la unidad de<u>adelanto</u> comenzará a funcionar en la capacidad total de la etapa 2 del compresor. Si el compresor ya está funcionando en la capacidad parcial de la etapa 1 debido al rango de enfriamiento libre exterior, el compresor se conmutará a la capacidad total de la etapa 2 del compresor.

El 3.ºº punto de ajuste de enfriamiento es 2 ºF de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 ºF de 1.1-1.6°C) más cálido que la etapa 2. Si hay una solicitud de enfriamiento de la 3.º etapa, el soplador de la unidad de retraso se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 3 parpadeará por 10 segundos antes de alcanzar el estado sólido. El economizador de la unidad de retraso funcionará si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en la capacidad parcial de la etapa 1 del compresor, en lugar del economizador.

El 4.º punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 3. Si hay una solicitud de enfriamiento de la 4.ª etapa, se encenderá la salida de enfriamiento Y2 de la unidad de <u>retraso</u>, momento en el cual el compresor de la unidad de<u>retraso</u> comenzará a funcionar en la capacidad total de la etapa 2 del compresor. Si el compresor ya está funcionando en la capacidad parcial de la etapa 1 debido al rango de enfriamiento libre exterior, el compresor se conmutará a la capacidad total de la etapa 2 del compresor.

#### 5. <u>Unidades del compresor de la etapa 2 con economizadores</u> ECONWMT o WECOP nuevos (consulte la Nota A)

El punto de ajuste de enfriamiento de la 1.º etapa es la entrada de configuración (SP) en el controlador. El valor predeterminado de fábrica es 77 °F (25 °C). Si hay una solicitud de enfriamiento, el soplador de la unidad de <u>adelanto</u> se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 1 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se encenderá la salida de enfriamiento Y1 de la unidad de <u>adelanto</u>. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de <u>adelanto</u> funcionará en lugar del compresor. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en la capacidad parcial de la etapa 1 del compresor, en lugar del economizador.

El 2.º punto de ajuste de enfriamiento es 4 °F de 2.2°C (configuración predeterminada, seleccionable por el usuario, de 2-6 °F de 1.1-3.3°C) más cálido que la etapa 1. Si hay una solicitud de enfriamiento de la 2.ª etapa, se encenderá la salida de enfriamiento Y2 de la unidad de <u>adelanto</u>. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de <u>adelanto</u> seguirá funcionando, y el compresor comenzará a funcionar en la capacidad parcial de la etapa 1 del compresor. Si el compresor ya está funcionando en la capacidad parcial de la etapa 1 debido al rango de enfriamiento libre exterior, el compresor se conmutará a la capacidad total de la etapa 2 del compresor.

El 3.ºº punto de ajuste de enfriamiento es 2 ºF de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 ºF de 1.1-1.6°C) más cálido que la etapa 2. Si hay una solicitud de enfriamiento de la 3.º etapa, el soplador de la unidad de <u>retraso</u> se activará de inmediato (si aún no está activado, consulte Funcionamiento del soplador), y el LED de la etapa 3 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se encenderá la salida de enfriamiento Y1 de la unidad de <u>retraso</u>. El economizador de la unidad de <u>retraso</u> funcionará si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador. Si las condiciones exteriores no son aceptables para el enfriamiento libre, el compresor funcionará automáticamente en la capacidad parcial de la etapa 1 del compresor, en lugar del economizador.

El 4.º punto de ajuste de enfriamiento es 2 °F de 1.1°C (configuración predeterminada, seleccionable por el usuario, de 2-3 °F de 1.1-1.6°C) más cálido que la etapa 3. Si hay una solicitud de enfriamiento de la 4.ª etapa, se encenderá la salida de enfriamiento Y2 de la unidad de <u>retraso</u> al activar el compresor. Si las condiciones exteriores de temperatura y humedad están por debajo del punto de ajuste de control del economizador, el economizador de la unidad de <u>retraso</u> seguirá funcionando, y el compresor comenzará a funcionar en la capacidad total de la etapa 2 del compresor. Si el compresor ya está funcionando en la capacidad parcial de la etapa 1 debido al rango de enfriamiento libre exterior, el compresor se conmutará a la capacidad total de la etapa 2 del compresor.

Nota A: Los economizadores de la serie ECONWMT o WECOP están disponibles con un sensor de exteriores de temperatura T solamente o con un sensor de exteriores de entalpía E (temperatura y humedad). Las versiones T tendrán una decisión de temperatura exterior fija (pero seleccionable) mientras que en las versiones E la decisión de temperatura exterior variará según la humedad exterior y la curva de entalpía seleccionada en el módulo de control del economizador.

### DE LA SECUENCIA DE CALEFACCIÓN DE LA OPERACIÓN

Nota: Todas las secuencias de calefacción para los aires acondicionados con calefacción eléctrica o bombas de calor operarán automáticamente en la secuencia alterna adelanto/retraso/adelanto/retraso incluso si el controlador está programado para no alternar para enfriar con o sin los economizadores.

#### 1. Aires acondicionados con calor eléctrico

1.er punto de ajuste del nivel de calefacción es la banda inactiva (DB) debajo del 1.er punto de ajuste de la etapa de enfriamiento (el SP ingresado en el programa). La banda inactiva se ajusta desde 2-40 °F de 1.1 - 22.2°C, y el valor por defecto de fábrica es de 17 °F de 9.4°C.

2. do punto de ajuste de la etapa de calefacción operará en el mismo diferencial entre etapas que se programó en el modo de enfriamiento.

#### 2. Bombas de calor con calor eléctrico

Cuando el controlador MC4002S está configurado para instalaciones de bombas de calor, las salidas de la 2.ª etapa, tanto para las unidades 1 y 2, se redefinen y utilizan para controlar las válvulas invertidas, y se activan en el modo calefacción.

1.er punto de ajuste del nivel de calefacción es la banda inactiva (DB) debajo del 1.er punto de ajuste de la etapa de enfriamiento (el SP ingresado en el programa). La banda inactiva se ajusta desde 2-40 °F de 1.1 - 22.2°C, y el valor por defecto de fábrica es de 17 °F de 9.4°C.

1.er etapa de calefacción consiste en que el soplador de la unidad de adelanto se encienda (si no está encendido vea Operación del soplador) y la válvula invertida sea activada. El LED de calefacción de la etapa 1 parpadeará por 10 segundos, momento en el cual se enciende el compresor.

El 2.º punto de ajuste de calefacción es 4 °F de 2.2°C (configuración predeterminada, seleccionable por el usuario, de 2-6 °F de 1.1-3.3°C) más frío que la etapa 1. Si hay una solicitud de calefacción de la 2.º etapa, el soplador de la unidad de <u>retraso</u>se enciende (si aún no está activado, consulte Funcionamiento del soplador), la válvula invertida se activa y el LED de la etapa 2 parpadeará por 10 segundos antes de alcanzar el estado sólido, momento en el cual se iniciará el compresor.

La 3.ª etapa de calefacción será el calefactor eléctrico, si está equipado, en la unidad de adelanto. El LED de calefacción de la etapa 3 se prende con una luz fija sin parpadear.

La 4.ª etapa de calefacción será el calefactor eléctrico, si está equipado, en la unidad de retraso. El LED de calefacción de la etapa 4 se prende con una luz fija sin parpadear.

### ESPECIFICACIONES PARA EL TABLERO OPCIONAL DE COMUNICACIÓN REMOTA

#### Tablero de comunicación CB5000

Nota: Si el tablero de comunicación (número de pieza Bard CB5000) no fue instalado originalmente en fábrica, se puede instalar en obra en cualquier momento. Permite acceder a distancia, a través de Ethernet y según el nivel de autoridad asignado, a todas las funciones del sistema controlador, tal como si el usuario estuviera presente en el edificio donde está instalado físicamente el sistema controlador.

Conexiones de entrada requeridas para el tablero CB5000 (son todas conexiones internas provenientes del tablero de alarma o del tablero del controlador principal):

- Conexión de incendio/humo del tablero del controlador principal MC4002.
- Entradas de bloqueo del refrigerante.
- Si se utilizan economizadores, se requiere un cable adicional de señal de 24 V desde cada acondicionador de aire hasta el sistema controlador.
- El cable de comunicación del tablero CB5000 se inserta en la conexión para Ethernet en el tablero controlador principal MC4002.

#### Sistema operativo

No se necesita un software especial para acceder al sistema. El tablero CB5000 posee una dirección predeterminada; solo se deben seguir estas instrucciones.

#### Para acceder al sistema

- Conectar el cable de Ethernet CAT 5 o CAT 6 de la computadora al puerto para Ethernet en el tablero CB5000.
- Cambiar la dirección IP de la computadora como se muestra a continuación para acceder por primera vez al tablero CB5000.

#### Tablero de comunicación CB5000

Botón Reset para volver a las configuraciones predeterminadas del controlador

Conexión a la toma de teléfono de la tarjeta del controlador principal

IP predeterminada



**Nota 1:**Tomar nota de la configuración actual de la dirección IP de la computadora ANTES de hacer cambios. Una vez que se haya asignado una dirección IP al tablero CB5000, restablecer dicha configuración original.

#### Para Windows XP o Windows 2000:

- Abrir el Panel de control y hacer doble clic en Conexiones de red
- Hacer doble clic en Conexión de área local en la pestaña General y seleccionar Propiedades.
- 3. En la pestaña General, desplazarse hasta Protocolo de Internet (TCP/IP).
- Resaltar Protocolo de Internet (TCP/IP) y seleccionar Propiedades.
- 5. Cambiar las direcciones como se indica a continuación:

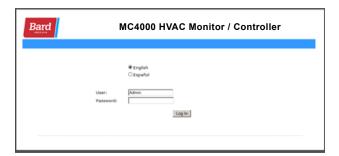
Dirección IP:192.168.1.50Máscara de subred:255.255.255.0Puerta de enlace predeterminada:192.168.1.1Servidor DNS preferido:192.168.1.10Servidor DNS alternativo:192.168.1.11

- 6. Hacer clic en OK y cerrar todas las ventanas.
- Abrir el navegador, ingresar la dirección IP predeterminada del tablero CB5000 192.168.1.67 y presionar "Enter".
- 8. Se abrirá la página de inicio de sesión del MC4000.

#### Para Windows Vista o Windows 7:

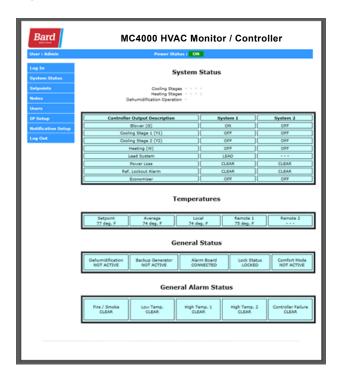
- 1. Abrir el Panel de control y hacer clic en Redes e Internet.
- 2. Hacer clic en Centro de redes y recursos compartidos.
- 3. Hacer clic en el enlace Red de área local.
- 4. Hacer clic en Propiedades.
- Resaltar Protocolo de Internet Versión 4 (TCP/IPV4) y seleccionar Propiedades.
- 6. Cambiar las direcciones como se indica a continuación:

Dirección IP: 192.168.1.50


Máscara de subred: 255.255.255.0

Puerta de enlace predeterminada: 192.168.1.1

Servidor DNS preferido: 192.168.1.10
Servidor DNS alternativo: 192.168.1.11


- 7. Hacer clic en OK y cerrar todas las ventanas.
- Abrir el navegador, ingresar la dirección IP predeterminada del tablero CB5000 192.168.1.67 y presionar "Enter".
- 9. Se abrirá la página de inicio de sesión del MC4000.

#### Página de inicio de sesión

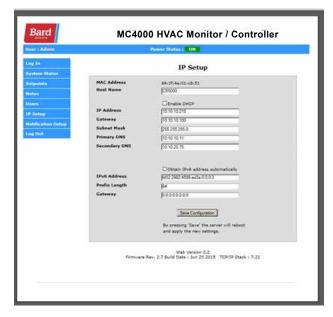


Ingresar "Admin" como nombre de usuario y "Bard" como contraseña. Es importante respetar el uso de mayúsculas y minúsculas. Presionar "Log In" (Iniciar sesión). Se abrirá la página de estado del sistema (System Status).

#### Página de estado del sistema



Esta página muestra lo siguiente:


- El estado general de HVAC de:
  - las etapas de refrigeración o calefacción activas o el modo de deshumidificación (se requiere sensor de humedad)
  - las salidas activas del controlador (soplante, etapa de refrigeración 1 o 2, calefacción) hacia cada acondicionador de aire
  - cuál es la unidad principal c.
  - pérdida de energía o bloqueo de refrigerante para cada acondicionador de aire
  - si se utilizan economizadores, muestra si están encendidos o apagados (Nota:para que esta función esté operativa los economizadores EIFM más antiguos requieren un kit de relés simples, N°de pieza Bard 8620-221).

- Estado general de los siguientes elementos:
  - si la deshumidificación está activa o no
  - si el generador de respaldo está activo o no (si está conectado a los controles de funcionamiento del generador para evitar que la unidad de retraso funcione durante el funcionamiento del generador)
  - si el tablero de alarma está conectado o no
  - si el sistema controlador está bloqueado o desbloqueado
  - si el modo "Comfort" (comodidad) está activo o no

#### Temperaturas:

- temperatura promedio (si se utiliza más de un sensor; de lo contrario medirá lo mismo que el sensor local)
- b. sensor local en el controlador
- Remoto 1 o Remoto 2, si están conectados
- 4. Estado general de la alarma:
  - Incendio/Humo, Borrar o Alarma
  - Baja Temp., Borrar o Alarma b.
  - Alta Temp.N°1, Borrar o Alarma c.
  - Alta Temp.N°2, Borrar o Alarma d.
  - Falla del controlador, Borrar o Alarma

Hacer clic en el botón "IP Setup" (Configuración IP) a la izquierda de la página.

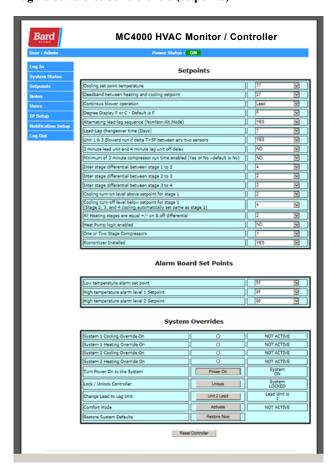


Nota:Si el usuario remoto está en una subred distinta a la del tablero CB5000, se recomienda utilizar direccionamiento IP estático en vez de DHCP.

#### Si la red utiliza direccionamiento IP estático

- Ingresar la información de la dirección correcta provista por su departamento de informática y hacer clic en el botón "Save Config" (Guardar configuración).
- 2. Se supone que la nueva dirección IP ya se ha configurado en la red para atravesar cualquier firewall.
- 3. Desconectar el cable Ethernet de la computadora y enchufarlo en el enrutador (router).
- 4. Cambiar la dirección IP de la computadora a la configuración previa registrada en la *Nota 1*.
- Escribir la nueva dirección IP en el navegador y hacer los cambios necesarios en el sistema del MC4000 antes de cerrar la sesión.

#### Si la red utiliza DHCP


- 1. Tildar el casillero "Enable DHCP" (Habilitar DHCP).
- Hacer clic en el casillero "Save Config" (Guardar configuración). Tomará varios segundos antes de recibir un aviso de que ahora se encuentra desconectado. En este punto, la unidad está funcionando en modo DHCP.
- 3. Cambiar la dirección IP de la computadora a la configuración previa registrada en la *Nota 1*.
- Escribir "CB5000" en la barra de direcciones URL del navegador para tener acceso al CB5000.

**Nota 2:**Para volver a la configuración predeterminada de IP del CB5000, solo se debe presionar el botón de restablecimiento que está junto a la ficha Ethernet durante más de 5 segundos y luego soltarlo.

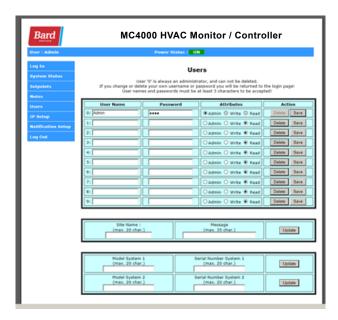
#### Conexión a la red

- Después de la configuración inicial utilizando una computadora portátil, desconectar el cable de la computadora del puerto Ethernet y conectar el cable de red CAT 5 o CAT 6.
- El acceso a distancia ahora está disponible utilizando la dirección IP asignada y un nombre de usuario y una contraseña válidos (se deben respetar mayúsculas y minúsculas).

#### Página de valores de referencia (setpoints)

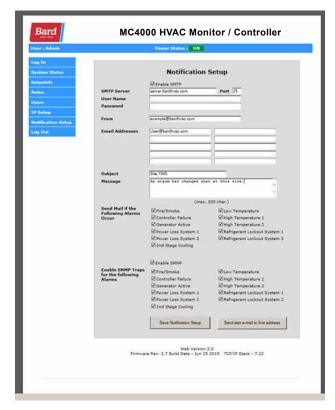


Nota:Las personas con autoridad a nivel "Lectura" pueden visualizar esta pantalla pero no pueden realizar cambios. Las personas con autoridad a nivel "Admin" y "Escritura" pueden realizar cambios.


- 1. Puntos de ajuste generales
  - Al momento de la instalación y el arranque iniciales, todas las características seleccionables tienen un valor predeterminado que viene de fábrica.
  - b. Cada uno de estos puntos tiene un menú desplegable que facilita su uso.
- 2. Puntos de ajuste del tablero de alarma
  - a. Punto de ajuste de la alarma de baja temperatura
  - b. Punto de ajuste de la alarma de alta temperatura N°1
  - Punto de ajuste de la alarma de alta temperatura N°2
- 3. Anulaciones del sistema
  - a. Anular enfriamiento del sistema 1
  - b. Anular calefacción del sistema 1
  - c. Anular enfriamiento del sistema 2
  - d. Anular calefacción del sistema 2
  - Encender alimentación del sistema (Nota:no se puede apagar el sistema controlador a distancia)
  - Bloquear/desbloquear el controlador

- Adelantar avance a la unidad de retardo
- Modo "Comfort" (Comodidad) h.
- i. Restablecer los valores predeterminados del sistema
- Reiniciar el controlador. Existen rutinas incorporadas j. para evitar que el sistema del controlador se "bloquee", pero esto también permite un reinicio manual a distancia como respaldo antes de llamar al servicio técnico para que acuda.

#### Página de notas


En esta página hay espacio para dejar notas a los técnicos o a los ingenieros acerca del equipo.

#### Página de usuarios



- La persona designada como Administrador (Admin) puede asignar hasta 9 usuarios adicionales y determinar el nivel de autoridad de administrador, para escritura o para lectura.
- Se deben asignar nombres de usuario y contraseñas que deben tener por lo menos 3 caracteres; se distinguen mayúsculas de minúsculas.
- Solo el Administrador puede dar de alta, de baja o modificar usuarios, y tiene acceso a todas las páginas del controlador.
- Quien tenga autoridad de Escritura puede hacer cambios en las características de operación y en la configuración del controlador, y posee acceso solo a las páginas Log In (Inicio de sesión), System Status (Estado del sistema), Setpoints (Puntos de ajuste) y Log Out (Cierre de sesión).
- Quien tenga autoridad de Lectura solo puede ver las páginas Status (Estado) y Setpoints (Puntos de ajuste) y no puede realizar cambios.

#### Página de configuración de notificaciones



La página de configuración de notificaciones se utiliza para determinar cuáles son las alarmas que se comunican a distancia con los sistemas de monitoreo fuera de las instalaciones. El tablero CB5000 es apto para notificaciones por correo electrónico y también para capturas de SNMP versión 2 en IPV4 e IPV6.

Se requiere información del servidor SMTP remoto y una dirección válida de correo electrónico.

Las capturas de SNMP se pueden enviar hasta a 4 direcciones IP, ya sean IPV4 o IPV6. Dichas direcciones se configuran en forma remota y la configuración es realizada por el personal del departamento de informática que realiza el seguimiento de las capturas. Las direcciones IP se configuran en el archivo MIB utilizando un navegador MIB estándar. En el archivo MIB deben estar habilitadas cada una de las capturas y debe haber guardada una dirección IP válida. Los archivos MIB se pueden conseguir en la página web de Bard: http://bardhvac.com/ software-download.

#### Botón de cierre de sesión (Log Out)

- Al hacer clic en este botón, automáticamente se desconectará del acceso a distancia del controlador.
- Para iniciar una nueva sesión es necesario ingresar la dirección IP asignada en el navegador e ingresar un nombre de usuario y una contraseña válidos.

#### **CABLEADO DEL CONTROLADOR**

El MC4002S puede utilizarse para controlar dos (2) aires acondicionados con o sin economizadores. También puede configurarse para dos (2) bombas de calor sin economizadores. Las unidades con economizadores se conectarán de un modo diferente a las unidades sin economizadores, por lo tanto es importante utilizar el diagrama de conexión correcto.

Existen economizadores EIFM más viejos y economizadores ECONWMT o WECOP más nuevos con el que el sistema controlador MC4002S puede trabajar, y también existe la opción de un tablero de comunicación Ethernet remoto. Por lo tanto, es importante seleccionar el diagrama correcto para conectar bajo voltaje. Ver Tabla 1: Selección del diagrama de conexión en la página 17.

#### FUNCIÓN DE (BLOQUEO DE) SEGURIDAD

El controlador MC4002S puede ser trabado para que personas no autorizadas no puedan realizar cambios a los puntos de referencia de temperatura o a cualquier otro parámetro seleccionable del sistema controlador.

Los botones ON/OFF (Encendido y apagado) y Comfort (Comodidad) permanecen completamente activos para su propósito normal. El botón Advance/Change/Save (Avanzar, cambiar y guardar) permanece activo solo para la función Advance (Avanzar), lo que permite que la posición de los aires acondicionados de adelanto y retroceso sea cambiada (invertida). El botón Program (Programación) permanece parcialmente activo, lo que permite revisar la lectura exacta de temperatura de los sensores de temperatura, y las configuraciones/opciones actuales que se eligieron. No obstante, no se pueden realizar cambios cuando el controlador está trabado, v si el botón Change (Cambiar) se presiona cuando está en modo Program (Programación), la pantalla mostrará Locd en vez de mostrar las opciones seleccionables para ese parámetro. La capacidad de reinicio a los valores predeterminados (DEF) también está deshabilitada cuando el controlador está en modo bloqueado.

Bloqueo y desbloqueo del controlador MC4002S:

- Para bloquear el controlador se requiere utilizar 3 botones mientras el controlador está en el modo normal de operación (funcionamiento).
- Presione y mantenga el botón Advance/Change/Save (Avanzar, cambiar y guardar) y los botones con las flechas hacia arriba y hacia abajo simultáneamente durante 20 segundos hasta que la pantalla muestre Locd.
- 3. Para destrabar el controlador, presione los botones Change (Cambiar) y los de las flechas hacia arriba y hacia abajo simultáneamente durante 20 segundos hasta que la pantalla muestre uLoc.

#### **FUNCIÓN DEL GENERADOR EN MARCHA**

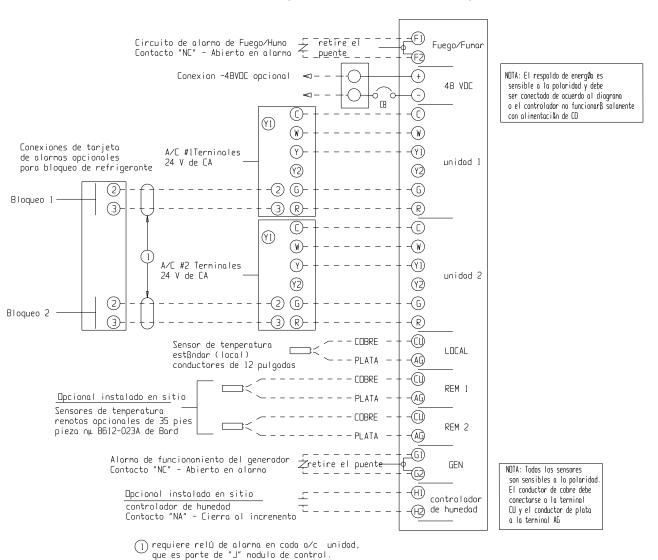
Si se lo desea, el controlador MC4002S puede señalarse desde un sistema generador en la cercanía para cerrar (operación de deshabilitar) el sistema de aire acondicionado de retraso. Esto a veces es necesario si el tamaño del generador no es suficiente para manejar la carga (amperaje) del edificio y de ambos sistemas de aire acondicionado.

Se requiere un contacto seco normalmente cerrado (NC) como parte de los controles del generador. Estos contactos deben abrirse cuando el generador se ponga en funcionamiento, lo que indicará que el controlador MC4002S en esta condición y la función de deshabilitar el aire acondicionado de retraso funcionan.

En la fábrica se instala un puente de cable a través de las terminales G1 y G2 o del tablero controlador principal. Para utilizar la función para poner en marcha el generador, retire el puente de G1 y G2, y conecte los contactos normalmente cerrados (NC) del generador que condicionará al generador a abrir-al-iniciar en las terminales G1 y G2.

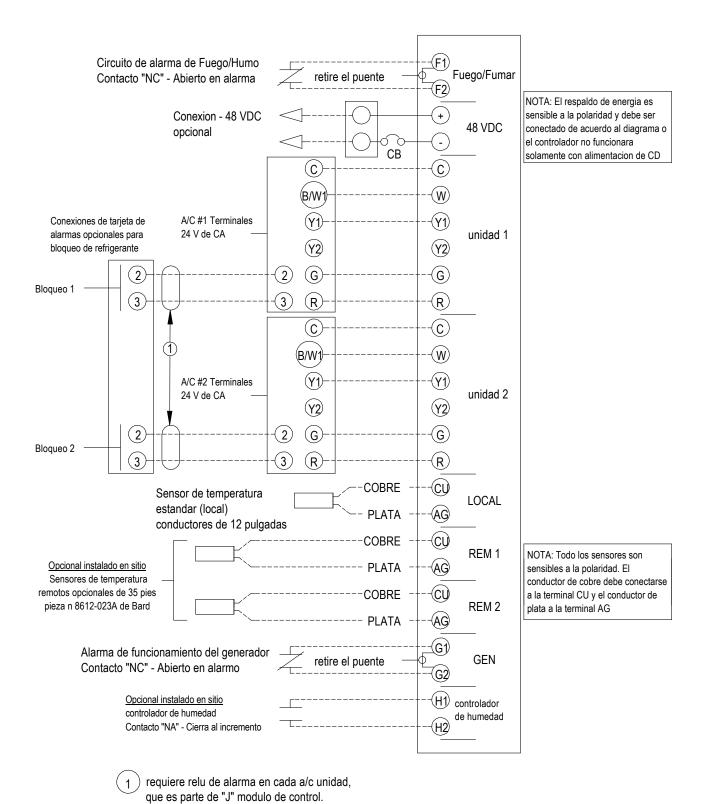
#### CONEXIÓN DE CC DE RESPALDO

Hay conexiones de entrada disponibles para conexiones de energía de respaldo de -24 V de CC o -48 V de CC (-20 a -56 V). Establecer esta conexión mantendrá el funcionamiento del microprocesador, la pantalla del panel frontal, el señalamiento con LED, y la operación de retraso de alarma durante los períodos de corte de energía comercial y cuando no hay ningún generador disponible en la cercanía. El circuito está protegido por un interruptor de circuito reemplazarse 0.5 A (500 mA).


**IMPORTANTE:** El protector de la batería de CC debe estar conectado al controlador y cableado como se muestra en los diagramas de cableado del controlador.

La conexión de corriente CC de respaldo es sensible a la polaridad. Si la polaridad es inversa, el controlador no funcionará con corriente de respaldo, y las funciones de la pantalla y la alarma no serán evidentes.

TABLA 1
TABLA DE SELECCIÓN DEL DIAGRAMA DE CONEXIÓN. SE MUESTRA LA FIGURA DE REFERENCIA 1


| Tipo de<br>sistema            | Serie<br>del<br>modelo | No<br>Economizador | MC4002-A or<br>MC4002-B<br>con tablero de<br>comunicaciones -<br>Sin economizador | Economizador<br>EIFM anterior —<br>Sin tablero de<br>comunicaciones | Economizador<br>EIFM anterior —<br>con tablero de<br>comunicaciones<br>CB5000 | Economizador<br>más<br>nuevo – Sin<br>tablero de<br>comunicaciones | Economizador<br>más<br>nuevo con<br>tablero de<br>comunicaciones<br>CB5000 |  |
|-------------------------------|------------------------|--------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| A/C con compresor de 1 etapa  | WA / WL<br>W**A / W**L | 1                  | 4                                                                                 | 7                                                                   | 9                                                                             | 11<br>ECONWMT                                                      | 14<br>ECONWMT                                                              |  |
| A/C con compresor de 1 etapa  | W**AA /<br>W**LA       | 2                  | 5                                                                                 | N/D                                                                 | N/D                                                                           | 12<br>WECOP                                                        | 15<br>WECOP                                                                |  |
| A/C con compresor de 2 etapas | WA*S /<br>WL*S         | 3                  | 6                                                                                 | 8                                                                   | 10                                                                            | 13<br>ECONWMT                                                      | 16<br>ECONWMT                                                              |  |
| Bomba de calor                | WH / W**H<br>SH / S**H | 17                 | 18                                                                                | N/D                                                                 | N/D                                                                           | N/D                                                                | N/D                                                                        |  |

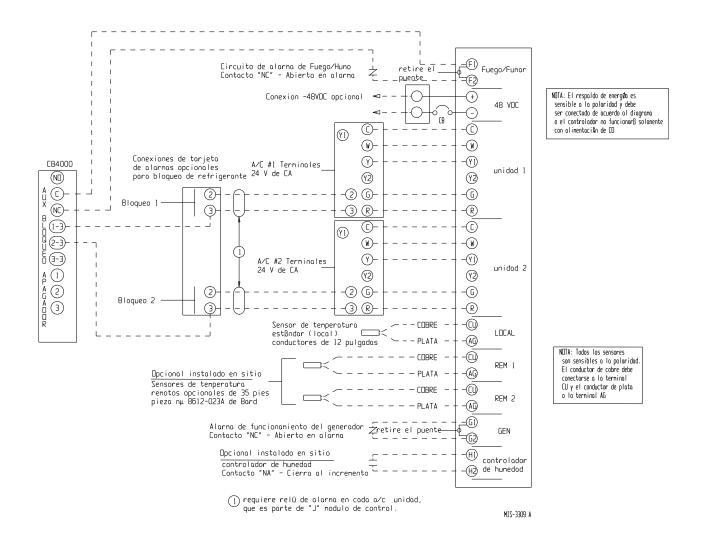
## FIGURA 1 CONEXIONES DEL CONTROLADOR ETAPA 1 DE AIRES ACONDICIONADOS (SERIES WA/WL, W\*\*A/W\*\*L) - SIN ECONOMIZADOR



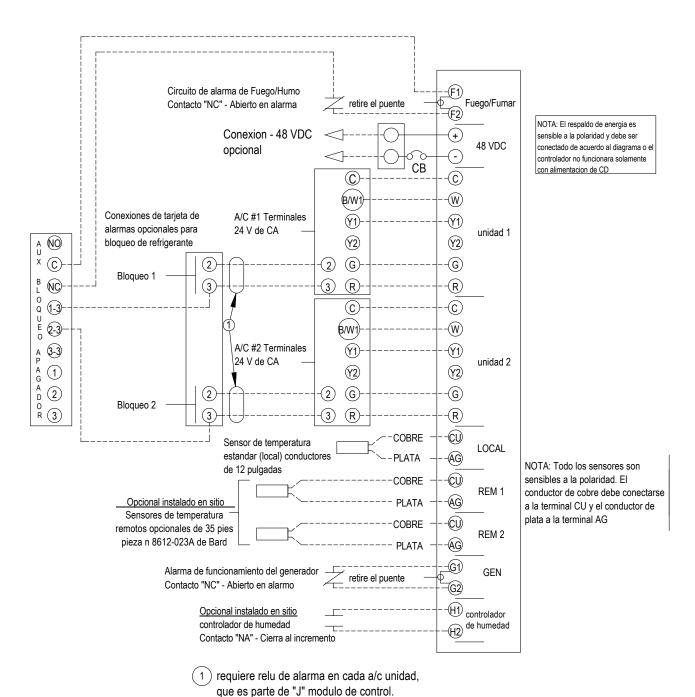

A E1EE-21M

## FIGURA 2 CONEXIONES DEL CONTROLADOR ETAPA 1 DE AIRES ACONDICIONADOS (SERIES W\*\*AA/W\*\*LA) - SIN ECONOMIZADOR



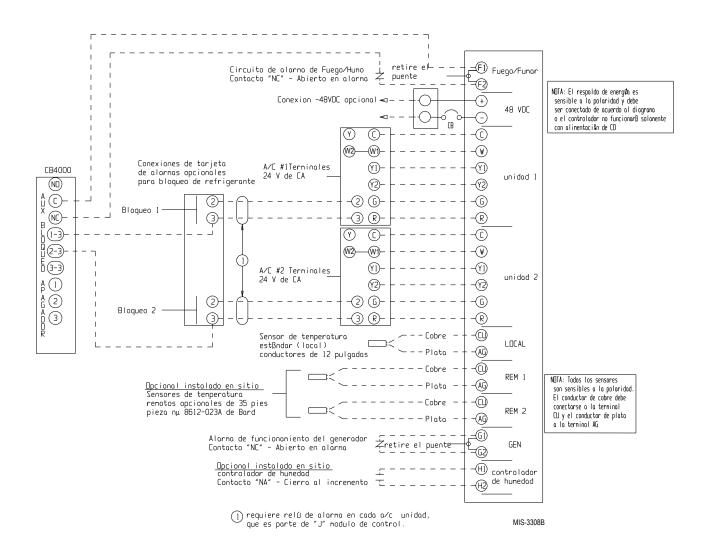

MIS-3827

## FIGURA 3 CONEXIONES DEL CONTROLADOR ETAPA 2 DE AIRES ACONDICIONADOS (SERIE WA\*S/WL\*S) - SIN ECONOMIZADORES

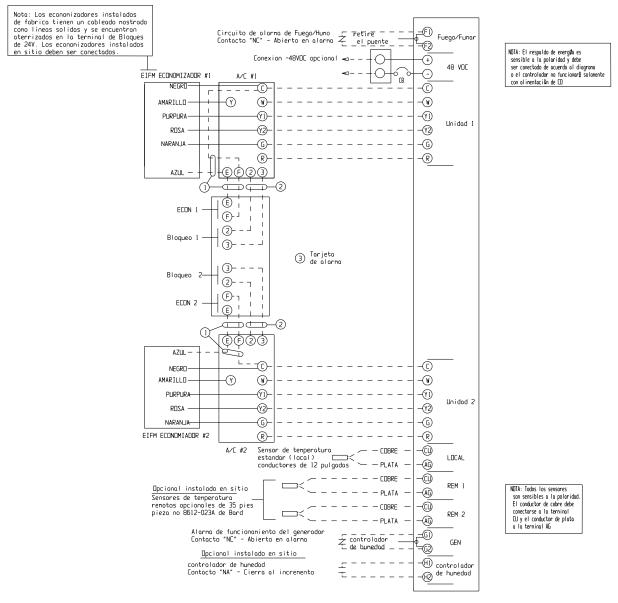



MIS-3310B

# FIGURA 4 CONEXIONES DEL CONTROLADOR ETAPA 1 DE AIRES ACONDICIONADOS (SERIES WA/WL, W\*\*A/W\*\*L) - SIN ECONOMIZADOR CON TABLERO DE ALARMA Y TABLERO DE COMUNICACIÓN CB5000

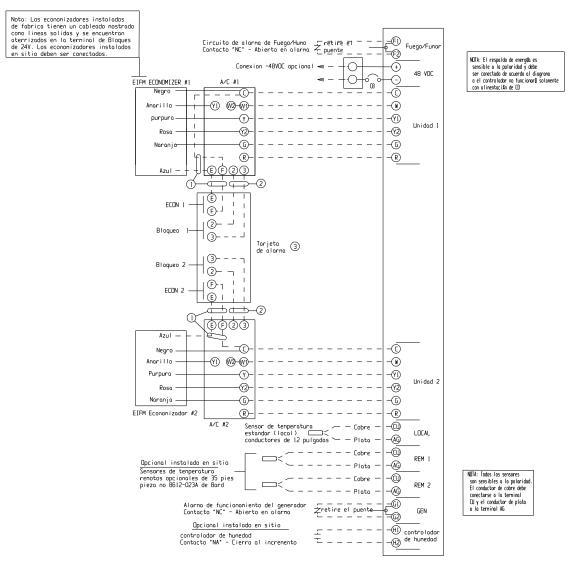



## FIGURA 5 CONEXIONES DEL CONTROLADOR ETAPA 1 DE AIRES ACONDICIONADOS (SERIES W\*\*AA/W\*\*LA) - SIN ECONOMIZADOR CON TABLERO DE ALARMA Y TABLERO DE COMUNICACIÓN CB5000




MIS-3828

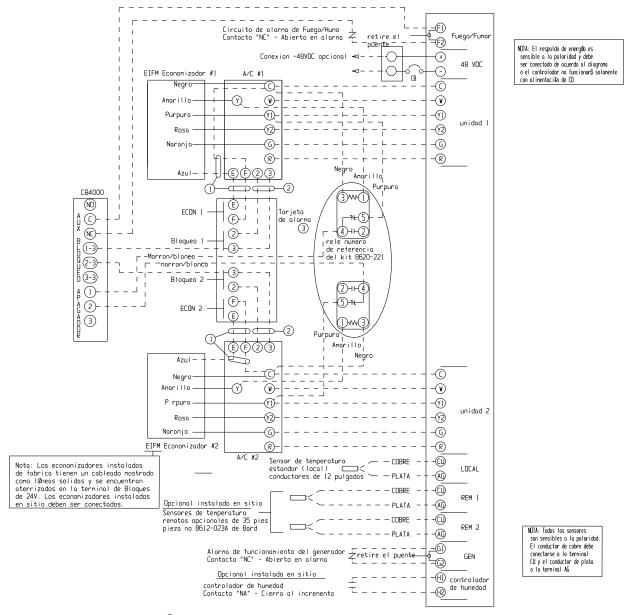
# FIGURA 6 CONEXIONES DEL CONTROLADOR ETAPA 2 DE AIRES ACONDICIONADOS (SERIE WA\*S/WL\*S) - SIN ECONOMIZADORES CON TABLERO DE ALARMA Y TABLERO DE COMUNICACIÓN CB5000




#### FIGURA 7 **CONEXIONES DEL CONTROLADOR** ETAPA 1 DE AIRES ACONDICIONADOS (SERIES WA/WL, W\*\*A/W\*\*L) CON ECONOMIZADORES EIFM MÁS VIEJOS



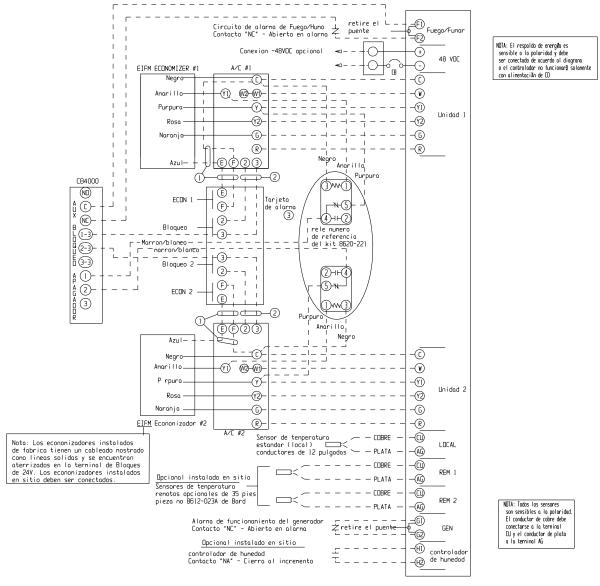
- ① Conecte "E" y "F" si desea una condicion de ventilacion de energencia durante la alarna de alta temperatura
- ② Rele de bloqueo de presion de refrigerante Requiere el nodulo de control "J" en las Unidades de aire acondicionado.
- ③ Las conexiones "E" y "F" para la ventilacion de energencia estan disponibles solo con la tarjeta de alarmas -B A ESEE-21M


# FIGURA 8 CONEXIONES DEL CONTROLADOR ETAPA 2 DE AIRES ACONDICIONADOS (SERIE WA\*S/WL\*S) CON ECONOMIZADORES EIFM MÁS VIEJOS



- ① Conecte "E" y "F" si desea una condicion de ventilacion de energencia durante la alarna de alta temperatura
- ② Rele de bloqueo de presion de refrigerante Requiere el modulo de control "J" en los Unidades de aire acondicionado.
- 3 Los conexiones "E" y "F" para la ventilación de energencia estan disponibles solo con la tarjeta de alarnos -B

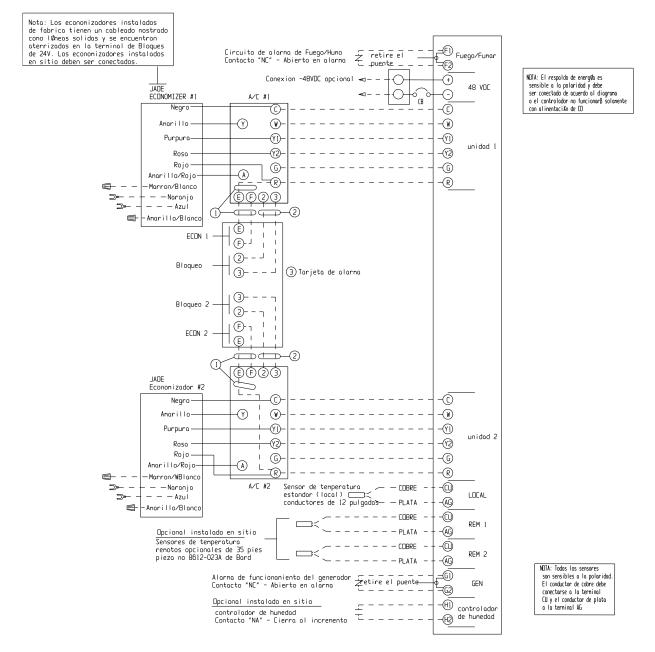
MIS-3321B


# FIGURA 9 CONEXIONES DEL CONTROLADOR ETAPA 1 DE AIRES ACONDICIONADOS (SERIES WA/WL, W\*\*A/W\*\*L) CON ECONOMIZADORES EIFM MÁS VIEJOS Y CON TABLERO DE ALARMA Y TABLERO DE COMUNICACIÓN CB5000



- $\bigcirc$  Conecte "E" y "F" si desea una condicion de ventilación de energencia durante la alarma de alta temperatura
- ② Rele de bloqueo de presion de refrigerante Requiere el modulo de control "J" en las Unidades de aire acondicionado.
- ③ Los conexiones "E" y "F" para la ventilación de energencia estan disponibles solo con la tarjeta de alarnos -B

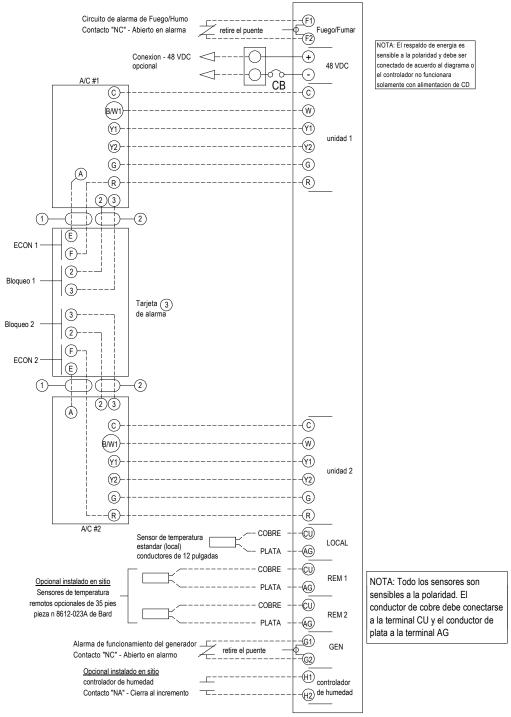
MIS-3315 A


# FIGURA 10 CONEXIONES DEL CONTROLADOR ETAPA 2 DE AIRES ACONDICIONADOS (SERIE WA\*S/WL\*S) CON ECONOMIZADORES EIFM MÁS VIEJOS Y CON TABLERO DE ALARMA Y TABLERO DE COMUNICACIÓN CB5000



- ① Conecte "E" y "F" si desea una condicion de ventilacion de emergencia durante la alarma de alta temperatura
- ② Rele de bloqueo de presion de refrigerante Requiere el modulo de control "J" en las Unidades de aire acondicionado.
- ③ Las conexiones "E" y "F" para la ventilación de energencia estan disponibles solo con la tarjeta de alarmas -B

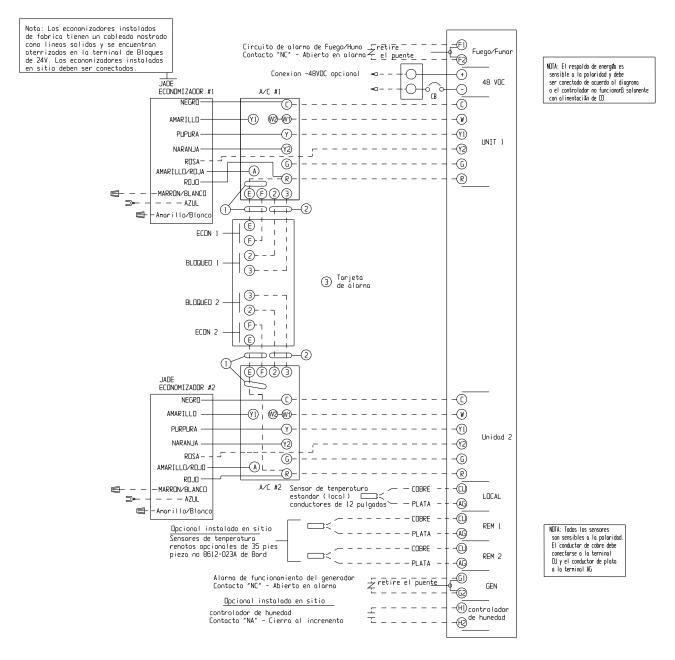
MIS-3317B


# FIGURA 11 CONEXIONES DEL CONTROLADOR ETAPA 1 DE AIRES ACONDICIONADOS (SERIES WA/WL, W\*\*A/W\*\*L) CON ECONOMIZADORES ECONWMT



- Sistema de ventilación de emergencia para agregar un puente desde la A a la F terminal en la unidad del bloque de baja tensión en la unidad. En el Jade economizador del economizador de consigna del controlador de posición mínima de 10 voltios.
- ② Rele de bloqueo de presion de refrigerante Requiere el modulo de control "J" en los Unidades de aire acondicionado.
- 3 Las conexiones "E" y "F" para la ventilación de emergencia estan disponibles solo con la tarjeta de alarnos -B

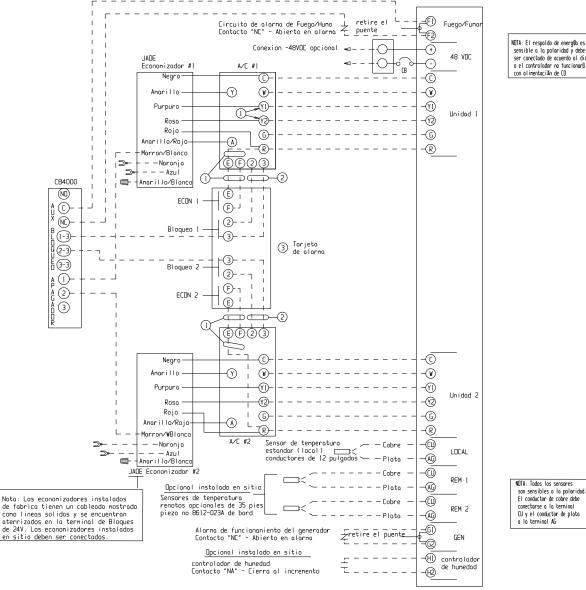
MIS-3316C


# FIGURA 12 CONEXIONES DEL CONTROLADOR ETAPA 1 DE AIRES ACONDICIONADOS (SERIES W\*\*AA/W\*\*LA) CON ECONOMIZADORES WECOP



- 1 El controlador Jade debe estar fijado a la posicion de 10 V minimo para trabajar como ventilador de emergencia.
- (2) Rele de bloqueo de presion de refrigerante Requiere el modulo de control "J" en las Unidades de aire acondicionado.
- 3 Las conexiones "E" y "F" para la ventilacion de emergencia estan disponibles solo con la tarjeta de alarmas -B

MIS-3829

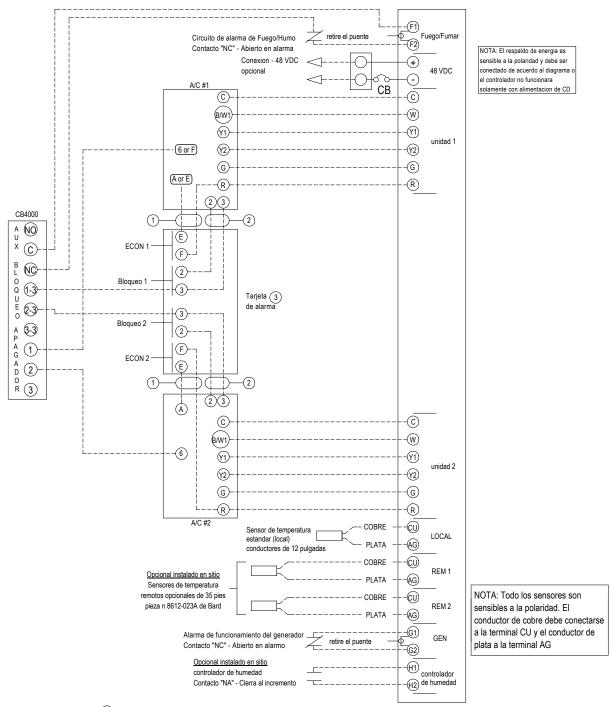

# FIGURA 13 CONEXIONES DEL CONTROLADOR ETAPA 2 DE AIRES ACONDICIONADOS (SERIE WA\*S/WL\*S) CON ECONOMIZADORES ECONWMT



- ① Sistema de ventilación de emergencia para agregar un puente desde la A a la F terminal en la unidad del bloque de baja tensión en la unidad. En el Jade economizador del economizador de consigna del controlador de posición mínima de 10 voltios.
- ② Rele de bloqueo de presion de refrigerante Requiere el nodulo de control "J" en las Unidades de aire ocondicionado.
- 3 Las conexiones "E" y "F" para la ventilación de energencia estan disponibles solo con la tarjeta de alarmos -B

MIS-3322D

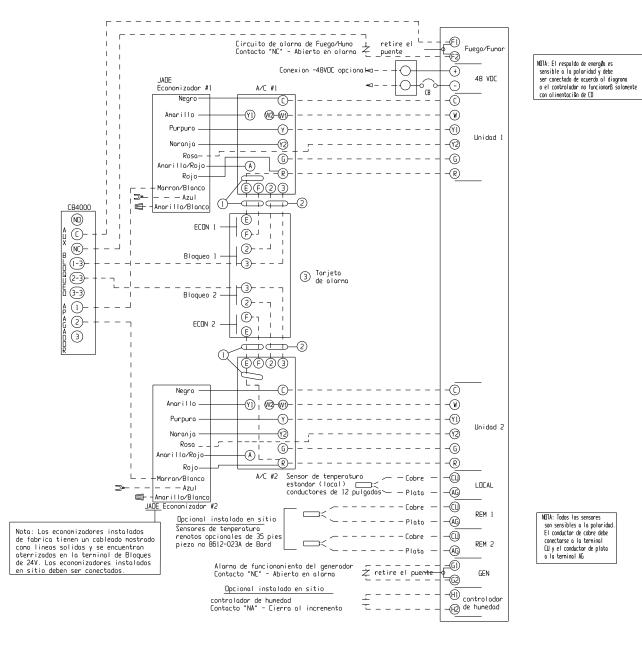
#### FIGURA 14 **CONEXIONES DEL CONTROLADOR** ETAPA 1 DE AIRES ACONDICIONADOS (SERIES WA/WL, W\*\*A/W\*\*L) **CON ECONOMIZADORES ECONWMT** Y CON TABLERO DE ALARMA Y TABLERO DE COMUNICACIÓN CB5000




NDTA: El respoldo de energ**í**o es sensible a la polaridad y debe ser conectado de acuerdo al diagrana o el controlador no funcionarß solanente con alinentoci**%**n de CD

- ① Sistema de ventilación de emergencia para agregar un puente desde la A a la F terminal en la unidad del bloque de baja tensión en la unidad. En el Jade economizador del economizador de consigna del controlador de posición mínima de 10 voltios.
- ② Rele de bloqueo de presion de refrigerante Requiere el modulo de control "J" en los Unidodes de aire acondicionado.
- 3 Los conexiones "E" y "F" pora la ventilación de energencia estan disponibles solo con la tarjeta de alarnas -B

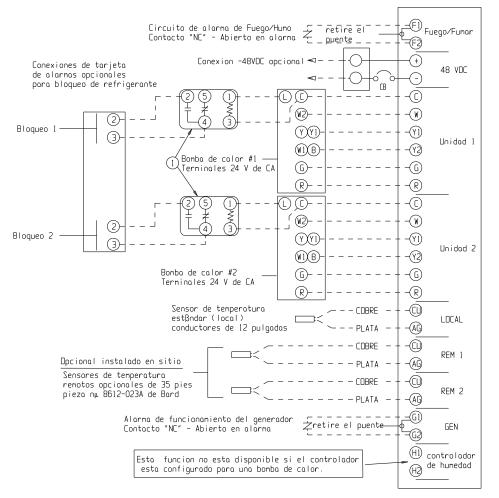
MIS-3318C


# FIGURA 15 CONEXIONES DEL CONTROLADOR ETAPA 1 DE AIRES ACONDICIONADOS (SERIES W\*\*AA/W\*\*LA) CON ECONOMIZADORES WECOP Y CON TABLERO DE ALARMA Y TABLERO DE COMUNICACIÓN CB5000



- 1 El controlador Jade debe estar fijado a la posicion de 10 V minimo para trabajar como ventilador de emergencia.
- 2 Rele de bloqueo de presion de refrigerante Requiere el modulo de control "J" en las Unidades de aire acondicionado.
- 3 Las conexiones "E" y "F" para la ventilacion de emergencia estan disponibles solo con la tarjeta de alarmas -B

MIS-3830A


# FIGURA 16 CONEXIONES DEL CONTROLADOR ETAPA 2 DE AIRES ACONDICIONADOS (SERIE WA\*S/WL\*S) CON ECONOMIZADORES ECONWMT Y CON TABLERO DE ALARMA Y TABLERO DE COMUNICACIÓN CB5000

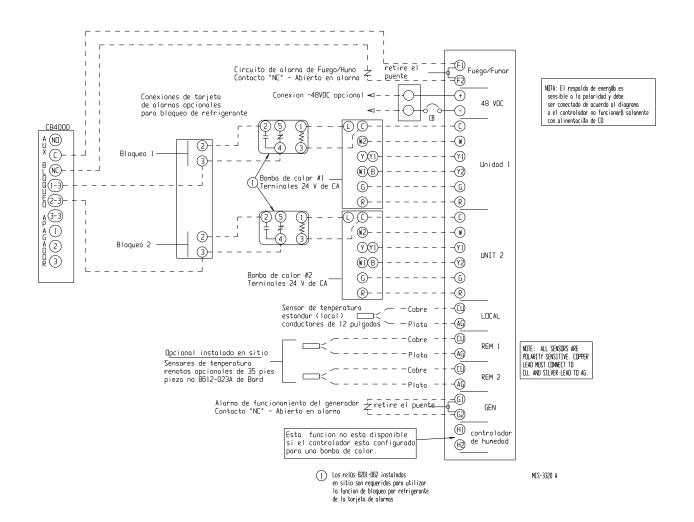


- ① Sistema de ventilación de emergencia para agregar un puente desde la A a la F terminal en la unidad del bloque de baja tensión en la unidad. En el Jade economizador del economizador de consigna del controlador de posición mínima de 10 voltios.
- ② Rele de bloqueo de presion de refrigerante Requiere el nodulo de control "J" en las Unidades de aire acondicionado.
- 3 Las conexiones "E" y "F" para la ventilación de energencia estan disponibles solo con la tarjeta de alarnos -B

MIS-3319D

#### FIGURA 17 **CONEXIONES DEL CONTROLADOR BOMBAS DE CALOR — SIN ECONOMIZADOR**




NOTA: El respoldo de energøo es sensible a la polaridad y debe ser conectado de acuerdo al diagrana o el controlador no funcionarß solamente con alimentaci¾n de CD

> NOTA: Todos los sensores son sensibles a la polaridad. El conductor de cobre debe conectarse a la terminal CU y el conductor de plata a la terminal AG

1) Los reles 8201-062 instalados en sitio son requeridos para utilizar la funcion de bloqueo por refrigerante de la tarjeta de alarnas

MIS-3314 A

# FIGURA 18 CONEXIONES DEL CONTROLADOR BOMBAS DE CALOR — SIN ECONOMIZADOR CON TABLERO DE ALARMA Y TABLERO DE COMUNICACIÓN CB5000 OPCIONAL



#### CABLEADO DE LA ALARMA

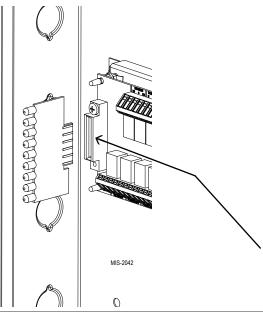
Los relés de la alarma pueden conectarse para una estrategia NA (alarma de circuito cerrado) o NC (alarma de circuito abierto).

Los relés de la alarma pueden utilizarse en forma individual si existen suficientes puntos de alarma disponibles en el edificio o pueden distribuirse en grupos más pequeños, o incluso en un solo grupo, para que puedan utilizarse todas las capacidades de la alarma

Cuando se agrupan varias alarmas y se emiten como una sola alarma, no habrá una indicación externa sobre el problema específico que pudo haber ocurrido, sino solo que una alarma del grupo se activó. El problema de la alarma individual se mostrará en la pantalla de los LED, en la superficie del controlador.

**Nota:** Todos los relés de alarma y de salida son de contacto seco en Forma C (SPDT) clasificados 1 A en 24 V de CA.

**Nota:** Todas las salidas de relés de alarma tienen un retardo de 10 segundos antes de su emisión para proteger contra las señales de alarma por interferencia.


La pérdida de corriente 1, la pérdida de corriente 2 y los relés de la alarma del controlador son "accionados a la inversa", lo que significa que están continuamente energizados (el contacto normalmente abierto está cerrado) y cambiado a la posición NC según la condición de la alarma. Por lo tanto, es importante seguir al pie de la letra los diagramas de conexión del tablero de alarma que se muestran a continuación.

Cualquier función de la alarma que no se desee puede simplemente ser ignorada (no conectada).

NOTA: El tablero de la pantalla de LED se envía desinstalado para protegerlo de posibles daños durante la instalación del cableado al tablero del controlador principal o al tablero de la alarma. Es sensible a la polaridad y está codificado para que solo pueda ser instalado en la posición correcta.

NOTA: El tablero de la pantalla de LED puede reemplazarse si se lo necesita independiente del tablero de alarma. El número de parte de Bard es 8612-022.

#### TABLERO DE PANTALLA DE LED DE LA ALARMA



#### ALARMA POR ENFRIAMIENTO EN LA SEGUNDA ETAPA

Si se lo desea, esta salida de la alarma está disponible para ser utilizada. Es importante tener en cuenta que en algunas instalaciones, debido al tamaño y carga de calor interna del sistema de A/C, la unidad secundaria (de retraso) de aire acondicionado puede asistir al aire acondicionado de adelanto en algunas ocasiones. Si esto es así, o posiblemente cuando se le agrega carga de calor adicional, usar la alarma de la 2.ª etapa de enfriamiento ocasionará condiciones de interferencia en la alarma.

**Nota:** Para las unidades con compresores de 2 etapas, la alarma de enfriamiento de ambas etapas se activa al poner en marcha la etapa 3 de enfriamiento. El paso 23 del menú debe estar programado en 2 para que esto ocurra, de lo contrario la alarma se activará en la etapa 2 de enfriamiento, lo que ocasionará una interferencia en la alarma.

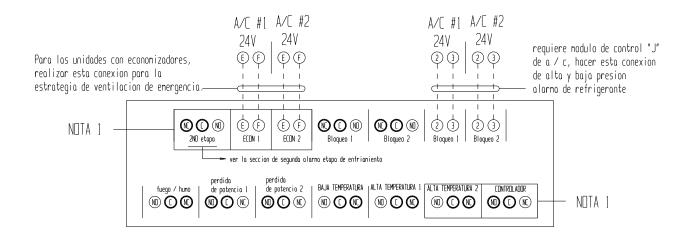
Para aquellas instalaciones donde se sabe que hay una redundancia del 100% (una unidad de aire acondicionado puede manejar el 100% de la carga el 100% del tiempo), el uso de la alarma de enfriamiento de la 2.ª etapa es un método para emitir una señal de alarma de que el aire acondicionado de adelanto no está funcionando (o no lo está haciendo en su total capacidad) y de que el aire acondicionado de retraso está ahora funcionando.

#### ALARMAS DE PRESIÓN DEL REFRIGERANTE

Los aires acondicionados con un módulo de control J están equipados con un relé de alarma que se activa en base a las condiciones altas o bajas de cerrado de presión del refrigerante. Conectar las terminales 2 y 3 del bloque de los terminales del aire acondicionado de 24 V con las terminales 2 y 3 correspondientes en el tablero de la alarma permitirá que estas alarmas funcionen.

### SECUENCIA DE VENTILACIÓN DE EMERGENCIA

Para las unidades con economizadores, hay dos (2) secuencias de ventilación de emergencia diseñadas dentro del controlador. Ambas requieren el tablero de alarma -B y la conexión de las terminales E y F del bloque de los terminales del aire acondicionado de 24 V a las terminales correspondientes en el tablero de alarma.


**Nota:** Las conexiones de cableado E y F en el bloque de terminal de 24 V en las unidades de A/C son diferentes en los economizadores EIFM más viejos que en los economizadores ECONWMT y WECOP más nuevos. Consulte los diagramas de conexión del controlador apropiados. Ver Tabla 1.

La secuencia uno requiere una alarma de presión del refrigerante, acoplada con una condición N.º 1 de alarma de temperatura alta (punto de ajuste HAL 1). Si se dan ambas condiciones, el economizador en el aire acondicionado que emitió la alarma del refrigerante se abrirá para ventilar el edificio.

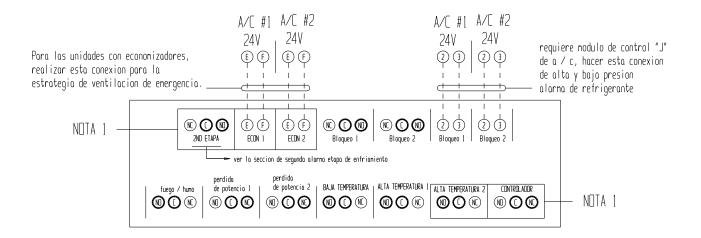
La secuencia dos (punto de ajuste HAL 2 ) se activa con la alarma N.º 2 de temperatura alta y se pondrá en funcionamiento incluso sin una señal de alarma de presión del refrigerante. Ambos economizadores se activarán para proveer ventilación de emergencia. Esta estrategia ayuda a proteger el edificio de sobre calentamiento si los aires acondicionados no están funcionando por razones relacionadas con la falta de presión (compresor, contactor, capacitor de marcha, etc., defectuosos).

**NOTA:**El tablero de la pantalla de LED está polarizado y solo funcionará en una dirección, como se muestra. Debe estar completamente colocado para que el controlador funcione adecuadamente.

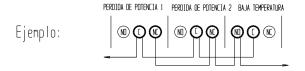
### FIGURA 19 CONEXIONES DEL TABLERO DE LA ALARMA PARA LA ESTRATEGIA NORMALMENTE CERRADA (NC) ABIERTA AL SONAR LA ALARMA



Utilice las terminales sombreadas Opara las alarmas designadas deseadas. Algunos relees son activados de manera inversa para obtener el "NA" normalmente abierto, y secuencia de cerrado en alarma. Cada uno puede ser usado individualmente si hay suficientes puntos de alarmas del edificio disponibles o pueden ser configuradas en grupos pequetos e incluso en un grupo sencillo para que todas las funciones de alarmas puedan ser utilizadas.




MI2-3311


**Nota 1**: Las alarmas de la 2.ª etapa, Econ 1, Econ 2, Temp Alta 2 y del controlador se encuentran sólamente en el tablero de alarma -B. El resto de las alarmas se encuentran tanto en los tableros de alarma -A como en los -B.

¡IMPORTANTE! El tablero de la pantalla de LED se envía suelto para protegerlo de posibles daños durante la instalación del cableado al tablero controlador principal o al tablero de la alarma. Es sensible a la polaridad y está codificado para que solo pueda ser instalado en la posición correcta.

### FIGURA 20 CONEXIONES DEL TABLERO DE LA ALARMA PARA LA ESTRATEGIA NORMALMENTE ABIERTA (NA) CERRADA AL SONAR LA ALARMA



Utilice las terminales sombreadas Opara las alarmas designadas deseadas. Algunos relees son activados de manera inversa para obtener el "NA" normalmente abierto, y secuencia de cerrado en alarma. Cada uno puede ser usado individualmente si hay suficientes puntos de alarmas del edificio disponibles o pueden ser configuradas en grupos pequetos e incluso en un grupo sencillo para que todas las funciones de alarmas puedan ser utilizadas.



MIS-3312

**Nota 1**: Las alarmas de la 2.ª etapa, Econ 1, Econ 2, Temp Alta 2 y del controlador se encuentran sólamente en el tablero de alarma -B. El resto de las alarmas se encuentran tanto en los tableros de alarma -A como en los -B.

¡IMPORTANTE! El tablero de la pantalla de LED se envía suelto para protegerlo de posibles daños durante la instalación del cableado al tablero controlador principal o al tablero de la alarma. Es sensible a la polaridad y está codificado para que solo pueda ser instalado en la posición correcta.

#### INSTRUCCIONES DE PROGRAMACIÓN

Para cambiar las posiciones de la unidad de adelanto y de retroceso, presione el botón ADVANCE (Avanzar).

Para ingresar al modo Program (Programación), presione el botón Program (Programación) y suéltelo cuando el mensaje Prog aparezca en la pantalla. En el modo Program (Programación), las flechas Down (Abajo) y Up (Arriba) se utilizan para desplazarse a través de los pasos de programación.

Cuando una pantalla está intermitente, la función o elección está seleccionada, y la pantalla alternará entre la función del paso y la programación.

Para cambiar la configuración de cualquier paso, presione el botón CHANGE (Cambiar) y la pantalla dejará de parpadear, lo que le permitirá cambiar la configuración con las flechas DOWN (Abajo) y UP (Arriba). Cuando llegue a la configuración deseada, presione el botón SAVE (Guardar) y proceda como lo desee. Cuando finalice con los cambios de programación, presione el botón Program (Programación) hasta que la pantalla deje de destellar y se visualice la temperatura ambiente en pantalla. Si no presiona ningún botón dentro de los treinta (30) segundos, el controlador automáticamente volverá al modo RUN (Funcionamiento).

Para restaurar todas las configuraciones del controlador a los valores predeterminados de fábrica, presione el botón PROGRAM (Programación) durante 10 segundos hasta que la pantalla muestre dEF.

NOTA: Cuando el controlador tiene la función de traba de seguridad activada, no se pueden realizar cambios en ninguna de las funciones seleccionables, y la función de reinicio a los valores predeterminados también está bloqueada. Todas las funciones/programaciones programables se pueden revisar usando el botón Program (Programación) y las fechas Up (Arriba) o Down (Abajo), pero cualquier intento por cambiar las configuraciones usando el botón Change (Cambiar) solo hará que la pantalla muestre Locd, lo que indica que el controlador está bloqueado. Ver la sección Función Seguridad (Bloqueo).

Ver la siguiente página para más información sobre Fuciones programables, Configuraciones predeterminadas y diseño de la etiqueta del panel frontal del MC4002S.

**NOTA:** Al utilizar los botones del controlador para revisar las configuraciones o introducir cambios, <u>presione y mantenga</u> los botones durante aproximadamente 1 segundo o hasta que la pantalla cambie.

El presionar o tocar rápidamente los botones no permitirá que el controlador responda.



### Serie Mo

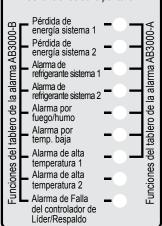
Controlador de estado sólido de sistema de doble unidad Líder/Respaldo

#### **Climate Control Solutions**

#### 20 3.° 4° Enfriaetapa etapa etapa etapa miento Calefac-20 3.0 4.0 etana etana etana etana ción

Pantalla digital

Unidad de N.º 2 adelanto


Operación de deshumidif.

#### Instrucciones de funcionamiento

- 1. Para alternar las unidades líder y respaldo presione "ADVANCE" Avanzar.
- 2. Para ingresar al modo Program (Programación), presione el botón "Programación" y suéltelo cuando aparezca "Prog". Use las flechas "DOWN" (Abajo) o "UP" (Arriba) para desplazarse por el Menú.
- . Cuando una pantalla está intermitente, la función o elección está seleccionada, y la pantalla alternará entre la función del paso y la programación.
- 4. Para cambiar la configuración de cualquier paso. presione el botón "Change" (Cambiar) y la pantalla dejará de parpadear, lo que le permitirá cambiar la configuración con las flechas "Down" (Abajo) o "Up" (Arriba). Cuando llegue a la configuración deseada, presione el botón "Save" (Guardar) y proceda como lo desee.
- 5. Cuando finalice con la programación, presione el botón "Programación" hasta que la pantalla deje de destellar y se visualice la temperatura ambiente en pantalla. Si no presiona ningún botón dentro de los 30 segundos, el controlador automáticamente volverá al modo "Run'

#### Alarmas

Los tableros de alarma son opcionales y pueden instalarse en la fábrica o en la obra. Consulte el interior del controlador para ver las funciones de la pantalla.









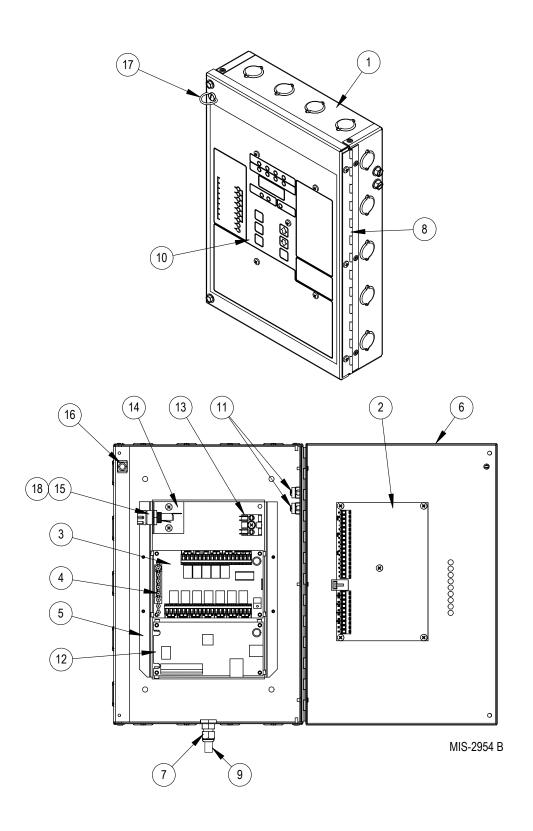




Confort

Modo Confort (Comfort)
Presione el botón "Confort" (Comfort) una vez para
reiniciar el Enfriamiento de 72 °F/22 °C y la calefacción de 68 °F/20 °C durante una hora. La pantalla destellará durante el período de anulación. Si desea cancelar el reinicio durante el período de anulación, presione por segunda vez, o el controlador volverá automáticamente al SP (punto de ajuste) seleccionado después de una hora

Menú del programa
NOTA: Presione y manteriga presionada las flechas
Up (Arriba) o Down (Abajo) durante un segundo hasta que a pantalla quede en blanco para desplazarse entre pasos


| 1_ | LSEn | Temperatura en el sensor local (principal) |
|----|------|--------------------------------------------|
|    |      |                                            |

- → Temperatura en el lugar del sensor remoto 1\*
  - r ≥ Temperatura en el lugar del sensor remoto 2\* 5P Punto de ajuste de temperatura de enfriamiento
  - (de 65 a 90 °F o de 18.3 a 32.2 °C. Valor predeterminado: 77 °F/25 °C). db Banda inactiva entre el punto de ajuste de enfriamiento
- y calefacción (de 2 a 40 °F o de 1.1 a 22.2 °C. Valor predeterminado: 17 °F/9.4 °C)
- CFRn Operación continua del soplador (Ninguna, Líder, Ambas. Valor predeterminado: Ninguna)
- dE9 Pantalla de grados (F o C. Valor predeterminado: F) RLT Secuencia alterna Líder/Respaldo/Líder/Respaldo o Secuencia no alterna Líder/Líder/Respaldo/Respaldo
- (Sí o No. Valor predeterminado: Sí para Alterna) LL[] Tiempo de conversión adelanto/retraso (días) (de 1 a 30 días o 0 para deshabilitación. Valor predeterminado: 7)
- HP Habilitación de la lógica de bomba de calor. Solo para bombas de calor de 1 etapa y secuencia de fuerzas de líder-respaldo. Anula una configuración No-Alt (Sí o No. Valor predeterminado: No)
- 11 [565 Ambos sopladores de la unidad 1 y 2 funcionan automáticamente si el delta T>5F entre cualquier 2 sensores conectados (Sí o No. Valor predeterminado: Sí)

- 12 OFBE Habilitación de retraso de desconexión de la unidad líder de 3 minutos y la unidad de respaldo de 4 minutos (Sí o No. Valor predeterminado: No)
- 13 CCUO Tiempo de ejecución mínimo del compresor de 3 minutos habilitado (Sí o No. Valor predeterminado: No)
- 14 LoRL Punto de ajuste de la alarma de baja temperatura (de 28 a 65 °F o de 21.1 a 48.8 °C. Valor predeterminado: 45 °F/7.2 °C)
- 15 HRL | Punto de ajuste Nivel 1 de la alarma de alta temperatura (de 70 a 120 °F o de 21.1 a 48.8 °C. Valor predeterminado: 90 °F/32.2 °C)
- HRL2 Punto de ajuste Nivel 2 de la alarma de alta temperatura 16
- (de 70 a 120 °F o de 21.1 a 49 °C. Valor predeterminado: 95 °F/35 °C) Diferencial entre etapas de la etapa 1 a la 2 (2, 3, 4, 5 o 6 °F. Valor predeterminado: 4)
- 15d 3 Diferencial entre etapas de la etapa 2 a la 3 (2 o 3 °F. Valor predeterminado: 2) 18
- 15d4 Diferencial entre etapas de la etapa 3 a la 4 (2 o 3 °F. Valor predeterminado: 2)
- Encendido sobre el SP para el enfriamiento de la etapa 1 (+1 o +2. Valor predeterminado: +2)
  - **£5**o**F** Apagado por debajo de SP para el enfriamiento de la etapa 1 (-1, -2, -3, o -4 °F. Valor predeterminado: -2) Nota: Para CSon y CSoF, el enfriamiento de las etapas 2, 3 y 4 es automáticamente igual que en la etapa 1.
- $\overline{22}$   $ext{ HS}_{00}$  Todas las etapas de calefacción son iguales al diferencial -/+ de encendido y apagado (-1/+1 o -2/+2. Valor predeterminado: -2/+2)
- Compresor de 1 o 2 etapas. Si se configura en 1, la alarma de enfriamiento de la 2.º etapa se activa en la Llamada de enfriamiento 2. Si se configura en 2, la alarma de enfriamiento de la 2.º etapa se activa en la Llamada de enfriamiento 3. (1 o 2. Valor predeterminado: 1)
- 24 Locol El controlador está bloqueado. Consulte a la autoridad del edificio para obtener más instrucciones.
  - r1 v r2 mostrarán la temperatura solo si están instalados los sensores remotos opcionales. Si los sensores no están instalados, estos se omiten en la secuencia de la pantalla. Si el sensor r1 o r2 están instalados, el MC los controlará según un "promedio" de todos los sensores conectados.
  - Consulte las instrucciones de instalación para obtener mayor información.

7961-789

FIGURA 21
DIAGRAMA DESCRIPTIVO DE LA LISTA DE PARTES



| Lista de partes |           |                                 |         |           |            |           |            |          |          |        |
|-----------------|-----------|---------------------------------|---------|-----------|------------|-----------|------------|----------|----------|--------|
| Dibujo<br>N.°   | Pieza N.° | Descripción                     | MC4002S | MC4002S-A | MC4002S-AC | MC4002S-B | MC4002S-BC | AB3000-A | AB3000-B | CB5000 |
| 1               | 127-343-4 | Casilla de Control              | Х       | Х         | Х          | Х         | Х          |          |          |        |
| 2               | 8612-043  | Tablero del<br>Controlador      | x       | х         | х          | х         | ×          |          |          |        |
| 3               | 8612-049  | Tablero de<br>Alarma A*         |         | Х         | Х          |           |            | х        |          |        |
| 3               | 8612-050  | Tablero de<br>Alarma B*         |         |           |            | х         | Х          |          | х        |        |
| 4               | 8612-022  | Pantalla de<br>Alarma           |         | х         | Х          | х         | Х          | х        | х        |        |
| 5               | 113-430-4 | Soporte de Apoyo                | X       | Х         | Х          | Х         | Х          |          |          |        |
| 6               | 152-385-4 | Puerta de Casilla<br>de Control | х       | х         | Х          | х         | ×          |          |          |        |
| 7               | 8611-099  | Ajuste de LTF                   | Х       | Х         | Х          | Х         | Х          |          |          |        |
| 8               | 5400-002  | Bisagra                         | Х       | Х         | Х          | Х         | Х          |          |          |        |
| 9               | 8612-023A | Sensor                          | Х       | Х         | Х          | Х         | Х          |          |          |        |
| 10              | 7961-731  | Etiqueta/Teclado                | Х       | Х         | Х          | Х         | Х          |          |          |        |
| 11              | 8611-006  | Terminal de<br>Puesta a Tierra  | 2       | 2         | 2          | 2         | 2          |          |          |        |
| 12              | 8612-047  | Tablero de<br>Comunicaciónes    |         |           | х          |           | ×          |          |          | x      |
| 13              | 8607-030  | Bloque de<br>Terminales         | х       | Х         | Х          | х         | ×          |          |          |        |
| 14              | 113-588   | Soporte de Porta<br>Fusible     | х       | Х         | Х          | Х         | ×          |          |          |        |
| 15              | 8614-056  | Porta Fusible                   | Х       | Х         | Х          | Х         | Х          |          |          |        |
| 16              | 1171-023  | Receptáculo de 1/4 de Vuelta    | х       | Х         | Х          | Х         | Х          |          |          |        |
| 17              | 1171-022  | Sujetador de ¼ de Vuelta        | х       | х         | Х          | х         | Х          |          |          |        |
| 18              | 8614-057  | Fusible                         | Х       | Х         | Х          | Х         | Х          |          |          |        |
| NM              | 8612-039  | Cable de<br>Comunicación        |         |           | Х          |           | Х          |          |          | х      |
| NM              | 8612-051  | Cable para el tablero de alarma |         | Х         | Х          | Х         | Х          | х        | Х        |        |

<sup>\*</sup> El 8612-051 cable se incluye con estas piezas

NM – No Mostrada